# Complete precategories
```agda
module category-theory.complete-precategories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.cones-precategories
open import category-theory.functors-precategories
open import category-theory.limits-precategories
open import category-theory.precategories
open import category-theory.terminal-objects-precategories
open import foundation.universe-levels
```
</details>
## Idea
A {{#concept "complete precategory" Agda=is-complete-Precategory}} is a
[precategory](category-theory.precategories.md) that has all
[limits](category-theory.limits-precategories.md) for diagrams from a specified
universe.
More precisely, we say that a precategory `D` is `(l1 , l2)`-complete if for any
`C : Precategory l1 l2` and any
[functor](category-theory.functors-precategories.md) `F : C → D` the type of
limits of `F` is inhabited.
## Definition
```agda
is-complete-Precategory :
(l1 l2 : Level) {l3 l4 : Level}
(D : Precategory l3 l4) →
UU (lsuc l1 ⊔ lsuc l2 ⊔ l3 ⊔ l4)
is-complete-Precategory l1 l2 D =
(C : Precategory l1 l2) (F : functor-Precategory C D) →
limit-Precategory C D F
```