# Isomorphisms in large categories
```agda
module category-theory.isomorphisms-in-large-categories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.isomorphisms-in-categories
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-categories
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.torsorial-type-families
open import foundation.universe-levels
```
</details>
## Idea
An **isomorphism** in a [large category](category-theory.large-categories.md)
`C` is a morphism `f : X → Y` in `C` for which there exists a morphism
`g : Y → X` such that `f ∘ g = id` and `g ∘ f = id`.
## Definitions
### The predicate of being an isomorphism
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
(f : hom-Large-Category C X Y)
where
is-iso-Large-Category : UU (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2)
is-iso-Large-Category =
is-iso-Large-Precategory (large-precategory-Large-Category C) f
hom-inv-is-iso-Large-Category :
is-iso-Large-Category → hom-Large-Category C Y X
hom-inv-is-iso-Large-Category =
hom-inv-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
is-section-hom-inv-is-iso-Large-Category :
(H : is-iso-Large-Category) →
comp-hom-Large-Category C f (hom-inv-is-iso-Large-Category H) =
id-hom-Large-Category C
is-section-hom-inv-is-iso-Large-Category =
is-section-hom-inv-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
is-retraction-hom-inv-is-iso-Large-Category :
(H : is-iso-Large-Category) →
comp-hom-Large-Category C (hom-inv-is-iso-Large-Category H) f =
id-hom-Large-Category C
is-retraction-hom-inv-is-iso-Large-Category =
is-retraction-hom-inv-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
```
### Isomorphisms in a large category
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
(X : obj-Large-Category C l1) (Y : obj-Large-Category C l2)
where
iso-Large-Category : UU (β l1 l1 ⊔ β l1 l2 ⊔ β l2 l1 ⊔ β l2 l2)
iso-Large-Category =
iso-Large-Precategory (large-precategory-Large-Category C) X Y
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
(f : iso-Large-Category C X Y)
where
hom-iso-Large-Category : hom-Large-Category C X Y
hom-iso-Large-Category =
hom-iso-Large-Precategory (large-precategory-Large-Category C) f
is-iso-iso-Large-Category :
is-iso-Large-Category C hom-iso-Large-Category
is-iso-iso-Large-Category =
is-iso-iso-Large-Precategory (large-precategory-Large-Category C) f
hom-inv-iso-Large-Category : hom-Large-Category C Y X
hom-inv-iso-Large-Category =
hom-inv-iso-Large-Precategory (large-precategory-Large-Category C) f
is-section-hom-inv-iso-Large-Category :
( comp-hom-Large-Category C
( hom-iso-Large-Category)
( hom-inv-iso-Large-Category)) =
( id-hom-Large-Category C)
is-section-hom-inv-iso-Large-Category =
is-section-hom-inv-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
is-retraction-hom-inv-iso-Large-Category :
( comp-hom-Large-Category C
( hom-inv-iso-Large-Category)
( hom-iso-Large-Category)) =
( id-hom-Large-Category C)
is-retraction-hom-inv-iso-Large-Category =
is-retraction-hom-inv-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
```
## Examples
### The identity isomorphisms
For any object `x : A`, the identity morphism `id_x : hom x x` is an isomorphism
from `x` to `x` since `id_x ∘ id_x = id_x` (it is its own inverse).
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 : Level} {X : obj-Large-Category C l1}
where
is-iso-id-hom-Large-Category :
is-iso-Large-Category C (id-hom-Large-Category C {X = X})
is-iso-id-hom-Large-Category =
is-iso-id-hom-Large-Precategory (large-precategory-Large-Category C)
id-iso-Large-Category : iso-Large-Category C X X
id-iso-Large-Category =
id-iso-Large-Precategory (large-precategory-Large-Category C)
```
### Equalities induce isomorphisms
An equality between objects `X Y : A` gives rise to an isomorphism between them.
This is because, by the J-rule, it is enough to construct an isomorphism given
`refl : X = X`, from `X` to itself. We take the identity morphism as such an
isomorphism.
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 : Level}
(X Y : obj-Large-Category C l1)
where
iso-eq-Large-Category :
X = Y → iso-Large-Category C X Y
iso-eq-Large-Category =
iso-eq-Large-Precategory (large-precategory-Large-Category C) X Y
eq-iso-Large-Category :
iso-Large-Category C X Y → X = Y
eq-iso-Large-Category =
map-inv-is-equiv (is-large-category-Large-Category C X Y)
compute-iso-eq-Large-Category :
iso-eq-Category (category-Large-Category C l1) X Y ~
iso-eq-Large-Category
compute-iso-eq-Large-Category =
compute-iso-eq-Large-Precategory (large-precategory-Large-Category C) X Y
extensionality-obj-Large-Category :
(X = Y) ≃ iso-Large-Category C X Y
pr1 extensionality-obj-Large-Category =
iso-eq-Large-Category
pr2 extensionality-obj-Large-Category =
is-large-category-Large-Category C X Y
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 : Level}
(X : obj-Large-Category C l1)
where
is-torsorial-iso-Large-Category :
is-torsorial (iso-Large-Category C X)
is-torsorial-iso-Large-Category =
is-contr-equiv'
( Σ (obj-Large-Category C l1) (X =_))
( equiv-tot (extensionality-obj-Large-Category C X))
( is-torsorial-Id X)
is-torsorial-iso-Large-Category' :
is-torsorial (λ Y → iso-Large-Category C Y X)
is-torsorial-iso-Large-Category' =
is-contr-equiv'
( Σ (obj-Large-Category C l1) (_= X))
( equiv-tot (λ Y → extensionality-obj-Large-Category C Y X))
( is-torsorial-Id' X)
```
## Properties
### Being an isomorphism is a proposition
Let `f : hom x y` and suppose `g g' : hom y x` are both two-sided inverses to
`f`. It is enough to show that `g = g'` since the equalities are propositions
(since the hom-types are sets). But we have the following chain of equalities:
`g = g ∘ id_y = g ∘ (f ∘ g') = (g ∘ f) ∘ g' = id_x ∘ g' = g'`.
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
where
all-elements-equal-is-iso-Large-Category :
(f : hom-Large-Category C X Y)
(H K : is-iso-Large-Category C f) → H = K
all-elements-equal-is-iso-Large-Category =
all-elements-equal-is-iso-Large-Precategory
( large-precategory-Large-Category C)
is-prop-is-iso-Large-Category :
(f : hom-Large-Category C X Y) →
is-prop (is-iso-Large-Category C f)
is-prop-is-iso-Large-Category f =
is-prop-all-elements-equal
( all-elements-equal-is-iso-Large-Category f)
is-iso-prop-Large-Category :
(f : hom-Large-Category C X Y) → Prop (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2)
is-iso-prop-Large-Category =
is-iso-prop-Large-Precategory (large-precategory-Large-Category C)
```
### Equality of isomorphism is equality of their underlying morphisms
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
where
eq-iso-eq-hom-Large-Category :
(f g : iso-Large-Category C X Y) →
hom-iso-Large-Category C f = hom-iso-Large-Category C g → f = g
eq-iso-eq-hom-Large-Category =
eq-iso-eq-hom-Large-Precategory (large-precategory-Large-Category C)
```
### The type of isomorphisms form a set
The type of isomorphisms between objects `x y : A` is a subtype of the set
`hom x y` since being an isomorphism is a proposition.
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
where
is-set-iso-Large-Category : is-set (iso-Large-Category C X Y)
is-set-iso-Large-Category =
is-set-iso-Large-Precategory (large-precategory-Large-Category C)
iso-set-Large-Category : Set (β l1 l1 ⊔ β l1 l2 ⊔ β l2 l1 ⊔ β l2 l2)
iso-set-Large-Category =
iso-set-Large-Precategory (large-precategory-Large-Category C) {X = X} {Y}
```
### Isomorphisms are closed under composition
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 : Level}
{X : obj-Large-Category C l1}
{Y : obj-Large-Category C l2}
{Z : obj-Large-Category C l3}
{g : hom-Large-Category C Y Z}
{f : hom-Large-Category C X Y}
where
hom-comp-is-iso-Large-Category :
is-iso-Large-Category C g →
is-iso-Large-Category C f →
hom-Large-Category C Z X
hom-comp-is-iso-Large-Category =
hom-comp-is-iso-Large-Precategory (large-precategory-Large-Category C)
is-section-comp-is-iso-Large-Category :
(q : is-iso-Large-Category C g)
(p : is-iso-Large-Category C f) →
comp-hom-Large-Category C
( comp-hom-Large-Category C g f)
( hom-comp-is-iso-Large-Category q p) =
id-hom-Large-Category C
is-section-comp-is-iso-Large-Category =
is-section-comp-is-iso-Large-Precategory
( large-precategory-Large-Category C)
is-retraction-comp-is-iso-Large-Category :
(q : is-iso-Large-Category C g)
(p : is-iso-Large-Category C f) →
comp-hom-Large-Category C
( hom-comp-is-iso-Large-Category q p)
( comp-hom-Large-Category C g f) =
id-hom-Large-Category C
is-retraction-comp-is-iso-Large-Category =
is-retraction-comp-is-iso-Large-Precategory
( large-precategory-Large-Category C)
is-iso-comp-is-iso-Large-Category :
is-iso-Large-Category C g → is-iso-Large-Category C f →
is-iso-Large-Category C (comp-hom-Large-Category C g f)
is-iso-comp-is-iso-Large-Category =
is-iso-comp-is-iso-Large-Precategory
( large-precategory-Large-Category C)
```
### Composition of isomorphisms
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 : Level}
{X : obj-Large-Category C l1}
{Y : obj-Large-Category C l2}
{Z : obj-Large-Category C l3}
(g : iso-Large-Category C Y Z)
(f : iso-Large-Category C X Y)
where
hom-comp-iso-Large-Category :
hom-Large-Category C X Z
hom-comp-iso-Large-Category =
hom-comp-iso-Large-Precategory (large-precategory-Large-Category C) g f
is-iso-comp-iso-Large-Category :
is-iso-Large-Category C hom-comp-iso-Large-Category
is-iso-comp-iso-Large-Category =
is-iso-comp-iso-Large-Precategory
( large-precategory-Large-Category C)
( g)
( f)
comp-iso-Large-Category :
iso-Large-Category C X Z
comp-iso-Large-Category =
comp-iso-Large-Precategory (large-precategory-Large-Category C) g f
hom-inv-comp-iso-Large-Category :
hom-Large-Category C Z X
hom-inv-comp-iso-Large-Category =
hom-inv-iso-Large-Category C comp-iso-Large-Category
is-section-inv-comp-iso-Large-Category :
comp-hom-Large-Category C
( hom-comp-iso-Large-Category)
( hom-inv-comp-iso-Large-Category) =
id-hom-Large-Category C
is-section-inv-comp-iso-Large-Category =
is-section-hom-inv-iso-Large-Category C comp-iso-Large-Category
is-retraction-inv-comp-iso-Large-Category :
comp-hom-Large-Category C
( hom-inv-comp-iso-Large-Category)
( hom-comp-iso-Large-Category) =
id-hom-Large-Category C
is-retraction-inv-comp-iso-Large-Category =
is-retraction-hom-inv-iso-Large-Category C comp-iso-Large-Category
```
### Inverses of isomorphisms are isomorphisms
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
{f : hom-Large-Category C X Y}
where
is-iso-inv-is-iso-Large-Category :
(p : is-iso-Large-Category C f) →
is-iso-Large-Category C (hom-inv-iso-Large-Category C (f , p))
pr1 (is-iso-inv-is-iso-Large-Category p) = f
pr1 (pr2 (is-iso-inv-is-iso-Large-Category p)) =
is-retraction-hom-inv-is-iso-Large-Category C f p
pr2 (pr2 (is-iso-inv-is-iso-Large-Category p)) =
is-section-hom-inv-is-iso-Large-Category C f p
```
### Inverses of isomorphisms
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
where
inv-iso-Large-Category :
iso-Large-Category C X Y →
iso-Large-Category C Y X
pr1 (inv-iso-Large-Category f) = hom-inv-iso-Large-Category C f
pr2 (inv-iso-Large-Category f) =
is-iso-inv-is-iso-Large-Category C
( is-iso-iso-Large-Category C f)
```
### Composition of isomorphisms satisfies the unit laws
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
(f : iso-Large-Category C X Y)
where
left-unit-law-comp-iso-Large-Category :
comp-iso-Large-Category C (id-iso-Large-Category C) f = f
left-unit-law-comp-iso-Large-Category =
left-unit-law-comp-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
right-unit-law-comp-iso-Large-Category :
comp-iso-Large-Category C f (id-iso-Large-Category C) = f
right-unit-law-comp-iso-Large-Category =
right-unit-law-comp-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
```
### Composition of isomorphisms is associative
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 l4 : Level}
{X : obj-Large-Category C l1}
{Y : obj-Large-Category C l2}
{Z : obj-Large-Category C l3}
{W : obj-Large-Category C l4}
(h : iso-Large-Category C Z W)
(g : iso-Large-Category C Y Z)
(f : iso-Large-Category C X Y)
where
associative-comp-iso-Large-Category :
comp-iso-Large-Category C (comp-iso-Large-Category C h g) f =
comp-iso-Large-Category C h (comp-iso-Large-Category C g f)
associative-comp-iso-Large-Category =
associative-comp-iso-Large-Precategory
( large-precategory-Large-Category C)
( h)
( g)
( f)
```
### Composition of isomorphisms satisfies inverse laws
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
(f : iso-Large-Category C X Y)
where
left-inverse-law-comp-iso-Large-Category :
comp-iso-Large-Category C (inv-iso-Large-Category C f) f =
id-iso-Large-Category C
left-inverse-law-comp-iso-Large-Category =
left-inverse-law-comp-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
right-inverse-law-comp-iso-Large-Category :
comp-iso-Large-Category C f (inv-iso-Large-Category C f) =
id-iso-Large-Category C
right-inverse-law-comp-iso-Large-Category =
right-inverse-law-comp-iso-Large-Precategory
( large-precategory-Large-Category C)
( f)
```
### A morphism `f` is an isomorphism if and only if precomposition by `f` is an equivalence
**Proof:** If `f` is an isomorphism with inverse `f⁻¹`, then precomposing with
`f⁻¹` is an inverse of precomposing with `f`. The only interesting direction is
therefore the converse.
Suppose that precomposing with `f` is an equivalence, for any object `Z`. Then
```text
- ∘ f : hom Y X → hom X X
```
is an equivalence. In particular, there is a unique morphism `g : Y → X` such
that `g ∘ f = id`. Thus we have a retraction of `f`. To see that `g` is also a
section, note that the map
```text
- ∘ f : hom Y Y → hom X Y
```
is an equivalence. In particular, it is injective. Therefore it suffices to show
that `(f ∘ g) ∘ f = id ∘ f`. To see this, we calculate
```text
(f ∘ g) ∘ f = f ∘ (g ∘ f) = f ∘ id = f = id ∘ f.
```
This completes the proof.
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
{f : hom-Large-Category C X Y}
(H :
{l3 : Level} (Z : obj-Large-Category C l3) →
is-equiv (precomp-hom-Large-Category C f Z))
where
hom-inv-is-iso-is-equiv-precomp-hom-Large-Category :
hom-Large-Category C Y X
hom-inv-is-iso-is-equiv-precomp-hom-Large-Category =
hom-inv-is-iso-is-equiv-precomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Large-Category :
comp-hom-Large-Category C
( hom-inv-is-iso-is-equiv-precomp-hom-Large-Category)
( f) =
id-hom-Large-Category C
is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Large-Category =
is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
is-section-hom-inv-is-iso-is-equiv-precomp-hom-Large-Category :
comp-hom-Large-Category C
( f)
( hom-inv-is-iso-is-equiv-precomp-hom-Large-Category) =
id-hom-Large-Category C
is-section-hom-inv-is-iso-is-equiv-precomp-hom-Large-Category =
is-section-hom-inv-is-iso-is-equiv-precomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
is-iso-is-equiv-precomp-hom-Large-Category :
is-iso-Large-Category C f
is-iso-is-equiv-precomp-hom-Large-Category =
is-iso-is-equiv-precomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
{f : hom-Large-Category C X Y}
(is-iso-f : is-iso-Large-Category C f)
(Z : obj-Large-Category C l3)
where
map-inv-precomp-hom-is-iso-Large-Category :
hom-Large-Category C X Z → hom-Large-Category C Y Z
map-inv-precomp-hom-is-iso-Large-Category =
precomp-hom-Large-Category C
( hom-inv-is-iso-Large-Category C f is-iso-f)
( Z)
is-equiv-precomp-hom-is-iso-Large-Category :
is-equiv (precomp-hom-Large-Category C f Z)
is-equiv-precomp-hom-is-iso-Large-Category =
is-equiv-precomp-hom-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( is-iso-f)
( Z)
equiv-precomp-hom-is-iso-Large-Category :
hom-Large-Category C Y Z ≃ hom-Large-Category C X Z
equiv-precomp-hom-is-iso-Large-Category =
equiv-precomp-hom-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( is-iso-f)
( Z)
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
(f : iso-Large-Category C X Y)
(Z : obj-Large-Category C l3)
where
is-equiv-precomp-hom-iso-Large-Category :
is-equiv (precomp-hom-Large-Category C (hom-iso-Large-Category C f) Z)
is-equiv-precomp-hom-iso-Large-Category =
is-equiv-precomp-hom-is-iso-Large-Category C
( is-iso-iso-Large-Category C f)
( Z)
equiv-precomp-hom-iso-Large-Category :
hom-Large-Category C Y Z ≃ hom-Large-Category C X Z
equiv-precomp-hom-iso-Large-Category =
equiv-precomp-hom-is-iso-Large-Category C
( is-iso-iso-Large-Category C f)
( Z)
```
### A morphism `f` is an isomorphism if and only if postcomposition by `f` is an equivalence
**Proof:** If `f` is an isomorphism with inverse `f⁻¹`, then postcomposing with
`f⁻¹` is an inverse of postcomposing with `f`. The only interesting direction is
therefore the converse.
Suppose that postcomposing with `f` is an equivalence, for any object `Z`. Then
```text
f ∘ - : hom Y X → hom Y Y
```
is an equivalence. In particular, there is a unique morphism `g : Y → X` such
that `f ∘ g = id`. Thus we have a section of `f`. To see that `g` is also a
retraction, note that the map
```text
f ∘ - : hom X X → hom X Y
```
is an equivalence. In particular, it is injective. Therefore it suffices to show
that `f ∘ (g ∘ f) = f ∘ id`. To see this, we calculate
```text
f ∘ (g ∘ f) = (f ∘ g) ∘ f = id ∘ f = f = f ∘ id.
```
This completes the proof.
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
{f : hom-Large-Category C X Y}
(H :
{l3 : Level} (Z : obj-Large-Category C l3) →
is-equiv (postcomp-hom-Large-Category C Z f))
where
hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category :
hom-Large-Category C Y X
hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category =
hom-inv-is-iso-is-equiv-postcomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category :
comp-hom-Large-Category C
( f)
( hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category) =
id-hom-Large-Category C
is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category =
is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
is-retraction-hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category :
comp-hom-Large-Category C
( hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category)
( f) =
id-hom-Large-Category C
is-retraction-hom-inv-is-iso-is-equiv-postcomp-hom-Large-Category =
is-retraction-hom-inv-is-iso-is-equiv-postcomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
is-iso-is-equiv-postcomp-hom-Large-Category :
is-iso-Large-Category C f
is-iso-is-equiv-postcomp-hom-Large-Category =
is-iso-is-equiv-postcomp-hom-Large-Precategory
( large-precategory-Large-Category C)
( H)
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
{f : hom-Large-Category C X Y}
(is-iso-f : is-iso-Large-Category C f)
(Z : obj-Large-Category C l3)
where
map-inv-postcomp-hom-is-iso-Large-Category :
hom-Large-Category C Z Y → hom-Large-Category C Z X
map-inv-postcomp-hom-is-iso-Large-Category =
postcomp-hom-Large-Category C
( Z)
( hom-inv-is-iso-Large-Category C f is-iso-f)
is-equiv-postcomp-hom-is-iso-Large-Category :
is-equiv (postcomp-hom-Large-Category C Z f)
is-equiv-postcomp-hom-is-iso-Large-Category =
is-equiv-postcomp-hom-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( is-iso-f)
( Z)
equiv-postcomp-hom-is-iso-Large-Category :
hom-Large-Category C Z X ≃ hom-Large-Category C Z Y
equiv-postcomp-hom-is-iso-Large-Category =
equiv-postcomp-hom-is-iso-Large-Precategory
( large-precategory-Large-Category C)
( is-iso-f)
( Z)
module _
{α : Level → Level} {β : Level → Level → Level}
(C : Large-Category α β) {l1 l2 l3 : Level}
{X : obj-Large-Category C l1} {Y : obj-Large-Category C l2}
(f : iso-Large-Category C X Y)
(Z : obj-Large-Category C l3)
where
is-equiv-postcomp-hom-iso-Large-Category :
is-equiv
( postcomp-hom-Large-Category C Z (hom-iso-Large-Category C f))
is-equiv-postcomp-hom-iso-Large-Category =
is-equiv-postcomp-hom-is-iso-Large-Category C
( is-iso-iso-Large-Category C f)
( Z)
equiv-postcomp-hom-iso-Large-Category :
hom-Large-Category C Z X ≃ hom-Large-Category C Z Y
equiv-postcomp-hom-iso-Large-Category =
equiv-postcomp-hom-is-iso-Large-Category C
( is-iso-iso-Large-Category C f)
( Z)
```