# Nonunital precategories
```agda
module category-theory.nonunital-precategories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.set-magmoids
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.truncated-types
open import foundation.truncation-levels
open import foundation.universe-levels
```
</details>
## Idea
A {{#concept "nonunital precategory" Agda=Nonunital-Precategory}} is a
[precategory](category-theory.precategories.md) that may not have identity
morphisms. In other words, it is an associative
[composition operation on binary families of sets](category-theory.composition-operations-on-binary-families-of-sets.md).
Such a structure may also be referred to as a _semiprecategory_.
Perhaps surprisingly, there is [at most one](foundation.subterminal-types.md)
way to equip nonunital precategories with identity morphisms, so precategories
form a [subtype](foundation-core.subtypes.md) of nonunital precategories.
## Definition
### The type of nonunital precategories
```agda
Nonunital-Precategory :
(l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
Nonunital-Precategory l1 l2 =
Σ ( UU l1)
( λ A →
Σ ( A → A → Set l2)
( associative-composition-operation-binary-family-Set))
module _
{l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
where
obj-Nonunital-Precategory : UU l1
obj-Nonunital-Precategory = pr1 C
hom-set-Nonunital-Precategory : (x y : obj-Nonunital-Precategory) → Set l2
hom-set-Nonunital-Precategory = pr1 (pr2 C)
hom-Nonunital-Precategory : (x y : obj-Nonunital-Precategory) → UU l2
hom-Nonunital-Precategory x y = type-Set (hom-set-Nonunital-Precategory x y)
is-set-hom-Nonunital-Precategory :
(x y : obj-Nonunital-Precategory) → is-set (hom-Nonunital-Precategory x y)
is-set-hom-Nonunital-Precategory x y =
is-set-type-Set (hom-set-Nonunital-Precategory x y)
associative-composition-operation-Nonunital-Precategory :
associative-composition-operation-binary-family-Set
hom-set-Nonunital-Precategory
associative-composition-operation-Nonunital-Precategory = pr2 (pr2 C)
comp-hom-Nonunital-Precategory :
{x y z : obj-Nonunital-Precategory} →
hom-Nonunital-Precategory y z →
hom-Nonunital-Precategory x y →
hom-Nonunital-Precategory x z
comp-hom-Nonunital-Precategory =
comp-hom-associative-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory)
( associative-composition-operation-Nonunital-Precategory)
comp-hom-Nonunital-Precategory' :
{x y z : obj-Nonunital-Precategory} →
hom-Nonunital-Precategory x y →
hom-Nonunital-Precategory y z →
hom-Nonunital-Precategory x z
comp-hom-Nonunital-Precategory' f g = comp-hom-Nonunital-Precategory g f
associative-comp-hom-Nonunital-Precategory :
{x y z w : obj-Nonunital-Precategory}
(h : hom-Nonunital-Precategory z w)
(g : hom-Nonunital-Precategory y z)
(f : hom-Nonunital-Precategory x y) →
comp-hom-Nonunital-Precategory (comp-hom-Nonunital-Precategory h g) f =
comp-hom-Nonunital-Precategory h (comp-hom-Nonunital-Precategory g f)
associative-comp-hom-Nonunital-Precategory =
witness-associative-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory)
( associative-composition-operation-Nonunital-Precategory)
involutive-eq-associative-comp-hom-Nonunital-Precategory :
{x y z w : obj-Nonunital-Precategory}
(h : hom-Nonunital-Precategory z w)
(g : hom-Nonunital-Precategory y z)
(f : hom-Nonunital-Precategory x y) →
comp-hom-Nonunital-Precategory (comp-hom-Nonunital-Precategory h g) f =ⁱ
comp-hom-Nonunital-Precategory h (comp-hom-Nonunital-Precategory g f)
involutive-eq-associative-comp-hom-Nonunital-Precategory =
involutive-eq-associative-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory)
( associative-composition-operation-Nonunital-Precategory)
```
### The underlying set-magmoid of a nonunital precategory
```agda
module _
{l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
where
set-magmoid-Nonunital-Precategory : Set-Magmoid l1 l2
pr1 set-magmoid-Nonunital-Precategory = obj-Nonunital-Precategory C
pr1 (pr2 set-magmoid-Nonunital-Precategory) = hom-set-Nonunital-Precategory C
pr2 (pr2 set-magmoid-Nonunital-Precategory) = comp-hom-Nonunital-Precategory C
```
### The total hom-type of a nonunital precategory
```agda
total-hom-Nonunital-Precategory :
{l1 l2 : Level} (C : Nonunital-Precategory l1 l2) → UU (l1 ⊔ l2)
total-hom-Nonunital-Precategory C =
Σ ( obj-Nonunital-Precategory C)
( λ x → Σ (obj-Nonunital-Precategory C) (hom-Nonunital-Precategory C x))
obj-total-hom-Nonunital-Precategory :
{l1 l2 : Level} (C : Nonunital-Precategory l1 l2) →
total-hom-Nonunital-Precategory C →
obj-Nonunital-Precategory C × obj-Nonunital-Precategory C
pr1 (obj-total-hom-Nonunital-Precategory C (x , y , f)) = x
pr2 (obj-total-hom-Nonunital-Precategory C (x , y , f)) = y
```
### Pre- and postcomposition by a morphism
```agda
module _
{l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
{x y : obj-Nonunital-Precategory C}
(f : hom-Nonunital-Precategory C x y)
(z : obj-Nonunital-Precategory C)
where
precomp-hom-Nonunital-Precategory :
hom-Nonunital-Precategory C y z → hom-Nonunital-Precategory C x z
precomp-hom-Nonunital-Precategory g = comp-hom-Nonunital-Precategory C g f
postcomp-hom-Nonunital-Precategory :
hom-Nonunital-Precategory C z x → hom-Nonunital-Precategory C z y
postcomp-hom-Nonunital-Precategory = comp-hom-Nonunital-Precategory C f
```
### The predicate on nonunital precategories of being unital
**Proof:** To show that unitality is a proposition, suppose
`e e' : (x : A) → hom-set x x` are both right and left units with regard to
composition. It is enough to show that `e = e'` since the right and left unit
laws are propositions (because all hom-types are sets). By function
extensionality, it is enough to show that `e x = e' x` for all `x : A`. But by
the unit laws we have the following chain of equalities:
`e x = (e' x) ∘ (e x) = e' x.`
```agda
module _
{l1 l2 : Level} (C : Nonunital-Precategory l1 l2)
where
is-unital-Nonunital-Precategory : UU (l1 ⊔ l2)
is-unital-Nonunital-Precategory =
is-unital-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory C)
( comp-hom-Nonunital-Precategory C)
is-prop-is-unital-Nonunital-Precategory :
is-prop
( is-unital-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory C)
( comp-hom-Nonunital-Precategory C))
is-prop-is-unital-Nonunital-Precategory =
is-prop-is-unital-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory C)
( comp-hom-Nonunital-Precategory C)
is-unital-prop-Nonunital-Precategory : Prop (l1 ⊔ l2)
is-unital-prop-Nonunital-Precategory =
is-unital-prop-composition-operation-binary-family-Set
( hom-set-Nonunital-Precategory C)
( comp-hom-Nonunital-Precategory C)
```
## Properties
### If the objects of a nonunital precategory are `k`-truncated for nonnegative `k`, the total hom-type is `k`-truncated
```agda
module _
{l1 l2 : Level} {k : 𝕋} (C : Nonunital-Precategory l1 l2)
where
is-trunc-total-hom-is-trunc-obj-Nonunital-Precategory :
is-trunc (succ-𝕋 (succ-𝕋 k)) (obj-Nonunital-Precategory C) →
is-trunc (succ-𝕋 (succ-𝕋 k)) (total-hom-Nonunital-Precategory C)
is-trunc-total-hom-is-trunc-obj-Nonunital-Precategory =
is-trunc-total-hom-is-trunc-obj-Set-Magmoid
( set-magmoid-Nonunital-Precategory C)
total-hom-truncated-type-is-trunc-obj-Nonunital-Precategory :
is-trunc (succ-𝕋 (succ-𝕋 k)) (obj-Nonunital-Precategory C) →
Truncated-Type (l1 ⊔ l2) (succ-𝕋 (succ-𝕋 k))
total-hom-truncated-type-is-trunc-obj-Nonunital-Precategory =
total-hom-truncated-type-is-trunc-obj-Set-Magmoid
( set-magmoid-Nonunital-Precategory C)
```
## Comments
As discussed in [Semicategories](https://ncatlab.org/nlab/show/semicategory) at
$n$Lab, it seems that a nonunital precategory should be the underlying nonunital
precategory of a [category](category-theory.categories.md) if and only if the
projection map
```text
pr1 : (Σ (a : A) Σ (f : hom a a) (is-neutral f)) → A
```
is an [equivalence](foundation-core.equivalences.md).
We can also define one notion of "isomorphism" as those morphisms that induce
equivalences of hom-[sets](foundation-core.sets.md) by pre- and postcomposition.
## External links
- [Semicategories](https://ncatlab.org/nlab/show/semicategory) at $n$Lab
- [Semigroupoid](https://en.wikipedia.org/wiki/Semigroupoid) at Wikipedia
- [semigroupoid](https://www.wikidata.org/wiki/Q4164581) at Wikidata