# Powers of elements in commutative semirings
```agda
module commutative-algebra.powers-of-elements-commutative-semirings where
```
<details><summary>Imports</summary>
```agda
open import commutative-algebra.commutative-semirings
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers
open import foundation.identity-types
open import foundation.universe-levels
open import ring-theory.powers-of-elements-semirings
```
</details>
## Idea
The **power operation** on a commutative semiring is the map `n x ↦ xⁿ`, which
is defined by iteratively multiplying `x` with itself `n` times.
## Definition
```agda
power-Commutative-Semiring :
{l : Level} (A : Commutative-Semiring l) →
ℕ → type-Commutative-Semiring A → type-Commutative-Semiring A
power-Commutative-Semiring A = power-Semiring (semiring-Commutative-Semiring A)
```
## Properties
### `xⁿ⁺¹ = xⁿx`
```agda
module _
{l : Level} (A : Commutative-Semiring l)
where
power-succ-Commutative-Semiring :
(n : ℕ) (x : type-Commutative-Semiring A) →
power-Commutative-Semiring A (succ-ℕ n) x =
mul-Commutative-Semiring A (power-Commutative-Semiring A n x) x
power-succ-Commutative-Semiring =
power-succ-Semiring (semiring-Commutative-Semiring A)
```
### Powers by sums of natural numbers are products of powers
```agda
module _
{l : Level} (A : Commutative-Semiring l)
where
distributive-power-add-Commutative-Semiring :
(m n : ℕ) {x : type-Commutative-Semiring A} →
power-Commutative-Semiring A (m +ℕ n) x =
mul-Commutative-Semiring A
( power-Commutative-Semiring A m x)
( power-Commutative-Semiring A n x)
distributive-power-add-Commutative-Semiring =
distributive-power-add-Semiring (semiring-Commutative-Semiring A)
```
### If `x` commutes with `y`, then powers distribute over the product of `x` and `y`
```agda
module _
{l : Level} (A : Commutative-Semiring l)
where
distributive-power-mul-Commutative-Semiring :
(n : ℕ) (x y : type-Commutative-Semiring A) →
power-Commutative-Semiring A n (mul-Commutative-Semiring A x y) =
mul-Commutative-Semiring A
( power-Commutative-Semiring A n x)
( power-Commutative-Semiring A n y)
distributive-power-mul-Commutative-Semiring n x y =
distributive-power-mul-Semiring
( semiring-Commutative-Semiring A)
( n)
( commutative-mul-Commutative-Semiring A x y)
```