# Strictly ordered pairs of natural numbers
```agda
module elementary-number-theory.strictly-ordered-pairs-of-natural-numbers where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.strict-inequality-natural-numbers
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.negated-equality
open import foundation.pairs-of-distinct-elements
open import foundation.unit-type
open import foundation.universe-levels
```
</details>
## Idea
A strictly ordered pair of natural numbers consists of `x y : ℕ` such that
`x < y`.
## Definition
```agda
strictly-ordered-pair-ℕ : UU lzero
strictly-ordered-pair-ℕ = Σ ℕ (λ x → Σ ℕ (λ y → le-ℕ x y))
module _
(p : strictly-ordered-pair-ℕ)
where
first-strictly-ordered-pair-ℕ : ℕ
first-strictly-ordered-pair-ℕ = pr1 p
second-strictly-ordered-pair-ℕ : ℕ
second-strictly-ordered-pair-ℕ = pr1 (pr2 p)
strict-inequality-strictly-ordered-pair-ℕ :
le-ℕ first-strictly-ordered-pair-ℕ second-strictly-ordered-pair-ℕ
strict-inequality-strictly-ordered-pair-ℕ = pr2 (pr2 p)
```
## Properties
### Strictly ordered pairs of natural numbers are pairs of distinct elements
```agda
pair-of-distinct-elements-strictly-ordered-pair-ℕ :
strictly-ordered-pair-ℕ → pair-of-distinct-elements ℕ
pair-of-distinct-elements-strictly-ordered-pair-ℕ (a , b , H) =
(a , b , neq-le-ℕ H)
```
### Any pair of distinct elements of natural numbers can be strictly ordered
```agda
strictly-ordered-pair-pair-of-distinct-elements-ℕ' :
(a b : ℕ) → a ≠ b → strictly-ordered-pair-ℕ
strictly-ordered-pair-pair-of-distinct-elements-ℕ' zero-ℕ zero-ℕ H =
ex-falso (H refl)
strictly-ordered-pair-pair-of-distinct-elements-ℕ' zero-ℕ (succ-ℕ b) H =
(0 , succ-ℕ b , star)
strictly-ordered-pair-pair-of-distinct-elements-ℕ' (succ-ℕ a) zero-ℕ H =
(0 , succ-ℕ a , star)
strictly-ordered-pair-pair-of-distinct-elements-ℕ' (succ-ℕ a) (succ-ℕ b) H =
map-Σ
( λ x → Σ ℕ (λ y → le-ℕ x y))
( succ-ℕ)
( λ x →
map-Σ (le-ℕ (succ-ℕ x)) succ-ℕ (λ y → id))
( strictly-ordered-pair-pair-of-distinct-elements-ℕ' a b
( λ p → H (ap succ-ℕ p)))
strictly-ordered-pair-pair-of-distinct-elements-ℕ :
pair-of-distinct-elements ℕ → strictly-ordered-pair-ℕ
strictly-ordered-pair-pair-of-distinct-elements-ℕ (a , b , H) =
strictly-ordered-pair-pair-of-distinct-elements-ℕ' a b H
```