# Families of equivalences
```agda
module foundation-core.families-of-equivalences where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.type-theoretic-principle-of-choice
```
</details>
## Idea
A **family of equivalences** is a family
```text
eᵢ : A i ≃ B i
```
of [equivalences](foundation-core.equivalences.md). Families of equivalences are
also called **fiberwise equivalences**.
## Definitions
### The predicate of being a fiberwise equivalence
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
where
is-fiberwise-equiv : (f : (x : A) → B x → C x) → UU (l1 ⊔ l2 ⊔ l3)
is-fiberwise-equiv f = (x : A) → is-equiv (f x)
```
### Fiberwise equivalences
```agda
module _
{l1 l2 l3 : Level} {A : UU l1}
where
fiberwise-equiv : (B : A → UU l2) (C : A → UU l3) → UU (l1 ⊔ l2 ⊔ l3)
fiberwise-equiv B C = Σ ((x : A) → B x → C x) is-fiberwise-equiv
map-fiberwise-equiv :
{B : A → UU l2} {C : A → UU l3} →
fiberwise-equiv B C → (a : A) → B a → C a
map-fiberwise-equiv = pr1
is-fiberwise-equiv-fiberwise-equiv :
{B : A → UU l2} {C : A → UU l3} →
(e : fiberwise-equiv B C) →
is-fiberwise-equiv (map-fiberwise-equiv e)
is-fiberwise-equiv-fiberwise-equiv = pr2
```
### Families of equivalences
```agda
module _
{l1 l2 l3 : Level} {A : UU l1}
where
fam-equiv : (B : A → UU l2) (C : A → UU l3) → UU (l1 ⊔ l2 ⊔ l3)
fam-equiv B C = (x : A) → B x ≃ C x
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
(e : fam-equiv B C)
where
map-fam-equiv : (x : A) → B x → C x
map-fam-equiv x = map-equiv (e x)
is-equiv-map-fam-equiv : is-fiberwise-equiv map-fam-equiv
is-equiv-map-fam-equiv x = is-equiv-map-equiv (e x)
```
## Properties
### Families of equivalences are equivalent to fiberwise equivalences
```agda
equiv-fiberwise-equiv-fam-equiv :
{l1 l2 l3 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) →
fam-equiv B C ≃ fiberwise-equiv B C
equiv-fiberwise-equiv-fam-equiv B C = distributive-Π-Σ
```
## See also
- In
[Functoriality of dependent pair types](foundation-core.functoriality-dependent-pair-types.md)
we show that a family of maps is a fiberwise equivalence if and only if it
induces an equivalence on [total spaces](foundation.dependent-pair-types.md).