# Negation
```agda
module foundation-core.negation where
```
<details><summary>Imports</summary>
```agda
open import foundation.universe-levels
open import foundation-core.empty-types
```
</details>
## Idea
The Curry-Howard interpretation of _negation_ in type theory is the
interpretation of the proposition `P ⇒ ⊥` using propositions as types. Thus, the
{{#concept "negation" Disambiguation="of a type" WDID=Q190558 WD="logical negation" Agda=¬_}}
of a type `A` is the type `A → empty`.
## Definition
```agda
infix 25 ¬_
¬_ : {l : Level} → UU l → UU l
¬ A = A → empty
map-neg :
{l1 l2 : Level} {P : UU l1} {Q : UU l2} →
(P → Q) → (¬ Q → ¬ P)
map-neg f nq p = nq (f p)
```
## External links
- [negation](https://ncatlab.org/nlab/show/negation) at $n$Lab
- [Negation](https://en.wikipedia.org/wiki/Negation) at Wikipedia