# Operations on spans
```agda
module foundation-core.operations-spans where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.morphisms-arrows
open import foundation.spans
open import foundation.universe-levels
open import foundation-core.function-types
```
</details>
## Idea
This file contains some operations on [spans](foundation.spans.md) that produce
new spans from given spans and possibly other data.
## Definitions
### Concatenating spans and maps on both sides
Consider a [span](foundation.spans.md) `s` given by
```text
f g
A <----- S -----> B
```
and maps `i : A → A'` and `j : B → B'`. The
{{#concept "concatenation span" Disambiguation="span" Agda=concat-span}} of `i`,
`s`, and `j` is the span
```text
i ∘ f j ∘ g
A' <------- S -------> B.
```
```agda
module _
{l1 l2 l3 l4 l5 : Level}
{A : UU l1} {A' : UU l2}
{B : UU l3} {B' : UU l4}
where
concat-span : span l5 A B → (A → A') → (B → B') → span l5 A' B'
pr1 (concat-span s i j) = spanning-type-span s
pr1 (pr2 (concat-span s i j)) = i ∘ left-map-span s
pr2 (pr2 (concat-span s i j)) = j ∘ right-map-span s
```
### Concatenating spans and maps on the left
Consider a [span](foundation.spans.md) `s` given by
```text
f g
A <----- S -----> B
```
and a map `i : A → A'`. The
{{#concept "left concatenation" Disambiguation="span" Agda=left-concat-span}} of
`s` by `i` is the span
```text
i ∘ f g
A' <------- S -----> B.
```
```agda
module _
{l1 l2 l3 l4 : Level}
{A : UU l1} {A' : UU l2}
{B : UU l3}
where
left-concat-span : span l4 A B → (A → A') → span l4 A' B
left-concat-span s f = concat-span s f id
```
### Concatenating spans and maps on the right
Consider a [span](foundation.spans.md) `s` given by
```text
f g
A <----- S -----> B
```
and a map `j : B → B'`. The
{{#concept "right concatenation" Disambiguation="span" Agda=right-concat-span}}
of `s` by `j` is the span
```text
f j ∘ g
A' <----- S -------> B.
```
```agda
module _
{l1 l2 l3 l4 : Level}
{A : UU l1}
{B : UU l3} {B' : UU l4}
where
right-concat-span : span l4 A B → (B → B') → span l4 A B'
right-concat-span s g = concat-span s id g
```
### Concatenating spans and morphisms of arrows on the left
Consider a span `s` given by
```text
f g
A <----- S -----> B
```
and a [morphism of arrows](foundation.morphisms-arrows.md) `h : hom-arrow f' f`
as indicated in the diagram
```text
f'
A' <---- S'
| |
h₀ | | h₁
∨ ∨
A <----- S -----> B.
f g
```
Then we obtain a span `A' <- S' -> B`.
```agda
module _
{l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} (s : span l3 A B)
{S' : UU l4} {A' : UU l5} (f' : S' → A') (h : hom-arrow f' (left-map-span s))
where
spanning-type-left-concat-hom-arrow-span : UU l4
spanning-type-left-concat-hom-arrow-span = S'
left-map-left-concat-hom-arrow-span :
spanning-type-left-concat-hom-arrow-span → A'
left-map-left-concat-hom-arrow-span = f'
right-map-left-concat-hom-arrow-span :
spanning-type-left-concat-hom-arrow-span → B
right-map-left-concat-hom-arrow-span =
right-map-span s ∘ map-domain-hom-arrow f' (left-map-span s) h
left-concat-hom-arrow-span : span l4 A' B
pr1 left-concat-hom-arrow-span = spanning-type-left-concat-hom-arrow-span
pr1 (pr2 left-concat-hom-arrow-span) = left-map-left-concat-hom-arrow-span
pr2 (pr2 left-concat-hom-arrow-span) = right-map-left-concat-hom-arrow-span
```
### Concatenating spans and morphisms of arrows on the right
Consider a span `s` given by
```text
f g
A <----- S -----> B
```
and a [morphism of arrows](foundation.morphisms-arrows.md) `h : hom-arrow g' g`
as indicated in the diagram
```text
g'
S' ----> B'
| |
h₀ | | h₁
∨ ∨
A <----- S -----> B.
f g
```
Then we obtain a span `A <- S' -> B'`.
```agda
module _
{l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2}
(s : span l3 A B)
{S' : UU l4} {B' : UU l5} (g' : S' → B')
(h : hom-arrow g' (right-map-span s))
where
spanning-type-right-concat-hom-arrow-span : UU l4
spanning-type-right-concat-hom-arrow-span = S'
left-map-right-concat-hom-arrow-span :
spanning-type-right-concat-hom-arrow-span → A
left-map-right-concat-hom-arrow-span =
left-map-span s ∘ map-domain-hom-arrow g' (right-map-span s) h
right-map-right-concat-hom-arrow-span :
spanning-type-right-concat-hom-arrow-span → B'
right-map-right-concat-hom-arrow-span = g'
right-concat-hom-arrow-span : span l4 A B'
pr1 right-concat-hom-arrow-span = spanning-type-right-concat-hom-arrow-span
pr1 (pr2 right-concat-hom-arrow-span) = left-map-right-concat-hom-arrow-span
pr2 (pr2 right-concat-hom-arrow-span) = right-map-right-concat-hom-arrow-span
```