# Path-split maps
```agda
module foundation-core.path-split-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.coherently-invertible-maps
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.identity-types
open import foundation-core.sections
```
</details>
## Idea
A map `f : A → B` is said to be **path split** if it has a
[section](foundation-core.sections.md) and its
[action on identifications](foundation.action-on-identifications-functions.md)
`x = y → f x = f y` has a section for each `x y : A`. By the
[fundamental theorem of identity types](foundation.fundamental-theorem-of-identity-types.md),
it follows that a map is path-split if and only if it is an
[equivalence](foundation-core.equivalences.md).
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
is-path-split : UU (l1 ⊔ l2)
is-path-split = section f × ((x y : A) → section (ap f {x = x} {y = y}))
```
## Properties
### A map is path-split if and only if it is an equivalence
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
abstract
is-path-split-is-equiv : is-equiv f → is-path-split f
pr1 (is-path-split-is-equiv is-equiv-f) = pr1 is-equiv-f
pr2 (is-path-split-is-equiv is-equiv-f) x y =
pr1 (is-emb-is-equiv is-equiv-f x y)
abstract
is-coherently-invertible-is-path-split :
is-path-split f → is-coherently-invertible f
pr1 (is-coherently-invertible-is-path-split ((g , G) , s)) =
g
pr1 (pr2 (is-coherently-invertible-is-path-split ((g , G) , s))) =
G
pr1 (pr2 (pr2 (is-coherently-invertible-is-path-split ((g , G) , s)))) x =
pr1 (s (g (f x)) x) (G (f x))
pr2 (pr2 (pr2 (is-coherently-invertible-is-path-split ((g , G) , s)))) x =
inv (pr2 (s (g (f x)) x) (G (f x)))
abstract
is-equiv-is-path-split : is-path-split f → is-equiv f
is-equiv-is-path-split =
is-equiv-is-coherently-invertible ∘
is-coherently-invertible-is-path-split
```
## See also
- For the notion of biinvertible maps see
[`foundation.equivalences`](foundation.equivalences.md).
- For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
[`foundation.coherently-invertible-maps`](foundation.coherently-invertible-maps.md).
- For the notion of maps with contractible fibers see
[`foundation.contractible-maps`](foundation.contractible-maps.md).
## References
{{#bibliography}} {{#reference UF13}} {{#reference Shu14UniversalProperties}}