# Transport along identifications
```agda
module foundation-core.transport-along-identifications where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.universe-levels
open import foundation-core.function-types
open import foundation-core.identity-types
```
</details>
## Idea
Given a type family `B` over `A`, an
[identification](foundation-core.identity-types.md) `p : x = y` in `A` and an
element `b : B x`, we can **transport** the element `b` along the identification
`p` to obtain an element `tr B p b : B y`.
The fact that `tr B p` is an [equivalence](foundation-core.equivalences.md) is
recorded in
[`foundation.transport-along-identifications`](foundation.transport-along-identifications.md).
## Definitions
### Transport
```agda
tr :
{l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x y : A} (p : x = y) → B x → B y
tr B refl b = b
```
## Properties
### Transport preserves concatenation of identifications
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
tr-concat :
{x y z : A} (p : x = y) (q : y = z) (b : B x) →
tr B (p ∙ q) b = tr B q (tr B p b)
tr-concat refl q b = refl
```
### Transposing transport along the inverse of an identification
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
eq-transpose-tr :
{x y : A} (p : x = y) {u : B x} {v : B y} →
v = tr B p u → tr B (inv p) v = u
eq-transpose-tr refl q = q
eq-transpose-tr' :
{x y : A} (p : x = y) {u : B x} {v : B y} →
tr B p u = v → u = tr B (inv p) v
eq-transpose-tr' refl q = q
```
### Every family of maps preserves transport
```agda
preserves-tr :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
(f : (i : I) → A i → B i)
{i j : I} (p : i = j) (x : A i) →
f j (tr A p x) = tr B p (f i x)
preserves-tr f refl x = refl
```
### Transporting along the action on identifications of a function
```agda
tr-ap :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : UU l3} {D : C → UU l4}
(f : A → C) (g : (x : A) → B x → D (f x))
{x y : A} (p : x = y) (z : B x) →
tr D (ap f p) (g x z) = g y (tr B p z)
tr-ap f g refl z = refl
```
### Computing maps out of identity types as transports
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} {a : A}
(f : (x : A) → (a = x) → B x)
where
compute-map-out-of-identity-type :
(x : A) (p : a = x) → f x p = tr B p (f a refl)
compute-map-out-of-identity-type x refl = refl
```
### Computing transport in the type family of identifications with a fixed target
```agda
tr-Id-left :
{l : Level} {A : UU l} {a b c : A} (q : b = c) (p : b = a) →
tr (_= a) q p = (inv q ∙ p)
tr-Id-left refl p = refl
```
### Computing transport in the type family of identifications with a fixed source
```agda
tr-Id-right :
{l : Level} {A : UU l} {a b c : A} (q : b = c) (p : a = b) →
tr (a =_) q p = (p ∙ q)
tr-Id-right refl p = inv right-unit
```
### Substitution law for transport
```agda
substitution-law-tr :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (B : A → UU l3) (f : X → A)
{x y : X} (p : x = y) {x' : B (f x)} →
tr B (ap f p) x' = tr (B ∘ f) p x'
substitution-law-tr B f refl = refl
```