# `0`-Images of maps
```agda
module foundation.0-images-of-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.truncation-images-of-maps
open import foundation.universe-levels
open import foundation-core.truncation-levels
```
</details>
## Idea
The {{#concept "0-image" Disambiguation="of a map of types" Agda=0-im}} of a map
`f : A → B` is the type
```text
0-im f := Σ (b : B), type-trunc-Set (fiber f b).
```
The map `A → 0-im f` is 0-[connected](foundation.connected-maps.md) and the map
`0-im f → B` is 0-[truncated](foundation.truncated-maps.md).
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
0-im : UU (l1 ⊔ l2)
0-im = trunc-im zero-𝕋 f
unit-0-im : A → 0-im
unit-0-im = unit-trunc-im zero-𝕋 f
projection-0-im : 0-im → B
projection-0-im = projection-trunc-im zero-𝕋 f
```
## Properties
### Characterization of the identity type of `0-im f`
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
Eq-unit-0-im : A → A → UU (l1 ⊔ l2)
Eq-unit-0-im = Eq-unit-trunc-im neg-one-𝕋 f
```