# The action on equivalences of functions out of subuniverses
```agda
module foundation.action-on-equivalences-functions-out-of-subuniverses where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-higher-identifications-functions
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equivalence-induction
open import foundation.subuniverses
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.identity-types
```
</details>
## Idea
Consider a [subuniverse](foundation.subuniverses.md) `P` of `𝒰` and a map
`f : P → B` from the subuniverse `P` into some type `B`. Then `f` has an
**action on equivalences**
```text
(X ≃ Y) → (f X = f Y)
```
which is uniquely determined by the
[identification](foundation-core.identity-types.md)
`action-equiv f id-equiv = refl`. The action on equivalences fits in a
[commuting square](foundation.commuting-squares-of-maps.md) of maps
```text
ap f
(X = Y) ---------------> (f X = f Y)
| |
equiv-eq | | id
∨ ∨
(X ≃ Y) ---------------> (f X = f Y)
action-equiv f
```
## Definitions
```agda
module _
{l1 l2 l3 : Level} (P : subuniverse l1 l2)
{B : UU l3} (f : type-subuniverse P → B)
where
abstract
unique-action-equiv-function-subuniverse :
(X : type-subuniverse P) →
is-contr
( Σ ( (Y : type-subuniverse P) → equiv-subuniverse P X Y → f X = f Y)
( λ h → h X id-equiv = refl))
unique-action-equiv-function-subuniverse X =
is-contr-map-ev-id-equiv-subuniverse P X
( λ Y e → f X = f Y)
( refl)
action-equiv-function-subuniverse :
(X Y : type-subuniverse P) → equiv-subuniverse P X Y → f X = f Y
action-equiv-function-subuniverse X Y =
ap f ∘ eq-equiv-subuniverse P
compute-action-equiv-function-subuniverse-id-equiv :
(X : type-subuniverse P) →
action-equiv-function-subuniverse X X id-equiv = refl
compute-action-equiv-function-subuniverse-id-equiv X =
ap² f (compute-eq-equiv-id-equiv-subuniverse P)
```