# Automorphisms
```agda
module foundation.automorphisms where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.sets
open import structured-types.pointed-types
```
</details>
## Idea
An automorphism on a type `A` is an equivalence `A ≃ A`. We will just reuse the
infrastructure of equivalences for automorphisms.
## Definitions
### The type of automorphisms on a type
```agda
Aut : {l : Level} → UU l → UU l
Aut Y = Y ≃ Y
is-set-Aut : {l : Level} {A : UU l} → is-set A → is-set (Aut A)
is-set-Aut H = is-set-equiv-is-set H H
Aut-Set : {l : Level} → Set l → Set l
pr1 (Aut-Set A) = Aut (type-Set A)
pr2 (Aut-Set A) = is-set-Aut (is-set-type-Set A)
Aut-Pointed-Type : {l : Level} → UU l → Pointed-Type l
pr1 (Aut-Pointed-Type A) = Aut A
pr2 (Aut-Pointed-Type A) = id-equiv
```