# Binary embeddings
```agda
module foundation.binary-embeddings where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.binary-equivalences
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels
open import foundation-core.embeddings
open import foundation-core.equivalences
```
</details>
## Idea
A binary operation `f : A → B → C` is said to be a binary embedding if the
functions `λ x → f x b` and `λ y → f a y` are embeddings for each `a : A` and
`b : B` respectively.
## Definition
```agda
is-binary-emb :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} →
(A → B → C) → UU (l1 ⊔ l2 ⊔ l3)
is-binary-emb {A = A} {B = B} f =
{x x' : A} {y y' : B} →
is-binary-equiv (λ (p : x = x') (q : y = y') → ap-binary f p q)
```
## Properties
### Any binary equivalence is a binary embedding
```agda
is-emb-fix-left-is-binary-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) →
is-binary-equiv f → {a : A} → is-emb (fix-left f a)
is-emb-fix-left-is-binary-equiv f H {a} =
is-emb-is-equiv (is-equiv-fix-left f H)
is-emb-fix-right-is-binary-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) →
is-binary-equiv f → {b : B} → is-emb (fix-right f b)
is-emb-fix-right-is-binary-equiv f H {b} =
is-emb-is-equiv (is-equiv-fix-right f H)
is-binary-emb-is-binary-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : A → B → C} →
is-binary-equiv f → is-binary-emb f
is-binary-emb-is-binary-equiv {f = f} H {x} {x'} {y} {y'} =
pair
( λ q →
is-equiv-left-map-triangle
( λ p → ap-binary f p q)
( concat' (f x y) (ap (fix-left f x') q))
( λ p → ap (fix-right f y) p)
( λ p → triangle-ap-binary f p q)
( is-emb-fix-right-is-binary-equiv f H x x')
( is-equiv-concat' (f x y) (ap (fix-left f x') q)))
( λ p →
is-equiv-left-map-triangle
( λ q → ap-binary f p q)
( concat (ap (fix-right f y) p) (f x' y'))
( λ q → ap (fix-left f x') q)
( λ q → triangle-ap-binary f p q)
( is-emb-fix-left-is-binary-equiv f H y y')
( is-equiv-concat (ap (fix-right f y) p) (f x' y')))
```