# Dependent sequences
```agda
module foundation.dependent-sequences where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.universe-levels
open import foundation-core.function-types
```
</details>
## Idea
A **dependent sequence** of elements in a family of types `A : ℕ → UU` is a
dependent map `(n : ℕ) → A n`.
## Definition
### Dependent sequences of elements in a family of types
```agda
dependent-sequence : {l : Level} → (ℕ → UU l) → UU l
dependent-sequence B = (n : ℕ) → B n
```
### Functorial action on maps of dependent sequences
```agda
map-dependent-sequence :
{l1 l2 : Level} {A : ℕ → UU l1} {B : ℕ → UU l2} →
((n : ℕ) → A n → B n) → dependent-sequence A → dependent-sequence B
map-dependent-sequence f a = map-Π f a
```