# Dependent telescopes
```agda
module foundation.dependent-telescopes where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import foundation.dependent-pair-types
open import foundation.telescopes
open import foundation.universe-levels
```
</details>
## Idea
A **dependent telescope** over a [telescope](foundation.telescopes.md) `A` of
length `n` is a dependent list of dependent types over each of the entries in
`A`. For example, a dependent telescope over the telescope
```text
A₀ : 𝒰 l₀
A₁ : A₀ → 𝒰 l₁
A₂ : (x₀ : A₀) → A₁ x₀ → 𝒰 l₂
```
consists of
```text
B₀ : A₀ → 𝒰 k₀
B₁ : (x₀ : A₀) (x₁ : A₁ x₀) → B₀ x₀ → UU k₁
B₂ : (x₀ : A₀) (x₁ : A₁ x₀) (x₂ : A₂ x₀ x₁) (y₀ : B x₀) → B₁ x₀ → UU k₂
```
## Definitions
### Dependent telescopes
```agda
data
dependent-telescope :
{l : Level} (k : Level) → {n : ℕ} → telescope l n → UUω
where
base-dependent-telescope :
{l1 k1 : Level} {A : UU l1} → (A → UU k1) →
dependent-telescope k1 (base-telescope A)
cons-dependent-telescope :
{l1 l2 k1 k2 : Level} {n : ℕ} {X : UU l1} {A : X → telescope l2 n}
{Y : X → UU k1} (B : (x : X) → Y x → dependent-telescope k2 (A x)) →
dependent-telescope (k1 ⊔ k2) (cons-telescope A)
```
### Expansion of telescopes
An **expansion** of a telescope `A` by a dependent telescope `B` over it is a
new telescope of the same length as `A`, constructed by taking
[dependent pairs](foundation.dependent-pair-types.md) componentwise.
```agda
expand-telescope :
{l1 l2 : Level} {n : ℕ} {A : telescope l1 n} →
dependent-telescope l2 A → telescope (l1 ⊔ l2) n
expand-telescope (base-dependent-telescope Y) =
base-telescope (Σ _ Y)
expand-telescope (cons-dependent-telescope B) =
cons-telescope (λ x → expand-telescope (B (pr1 x) (pr2 x)))
```
### Interleaving telescopes
Given a telescope `A` of length `n` and a dependent telescope `B` over it, we
can define the **interleaved telescope** whose length is `2n`.
```agda
interleave-telescope :
{l1 l2 : Level} {n : ℕ} {A : telescope l1 n} →
dependent-telescope l2 A → telescope (l1 ⊔ l2) (succ-ℕ (n *ℕ 2))
interleave-telescope (base-dependent-telescope A) =
cons-telescope (λ x → base-telescope (A x))
interleave-telescope (cons-dependent-telescope B) =
cons-telescope (λ x → cons-telescope λ y → interleave-telescope (B x y))
```
### Mapping telescopes
Given a telescope `A` and a dependent telescope `B` over it, we can define the
**mapping telescope** by taking dependent function types componentwise.
```agda
telescope-Π :
{l1 l2 : Level} {n : ℕ} {A : telescope l1 n} →
dependent-telescope l2 A → telescope (l1 ⊔ l2) n
telescope-Π (base-dependent-telescope Y) =
base-telescope ((x : _) → Y x)
telescope-Π (cons-dependent-telescope B) =
cons-telescope (λ x → telescope-Π (B (pr1 x) (pr2 x)))
```