# Descent for dependent pair types
```agda
module foundation.descent-dependent-pair-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.functoriality-fibers-of-maps
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.pullbacks
```
</details>
## Theorem
```agda
module _
{l1 l2 l3 l4 l5 : Level}
{I : UU l1} {A : I → UU l2} {A' : I → UU l3} {X : UU l4} {X' : UU l5}
(f : (i : I) → A i → X) (h : X' → X)
(c : (i : I) → cone (f i) h (A' i))
where
cone-descent-Σ : cone (ind-Σ f) h (Σ I A')
cone-descent-Σ =
triple
( tot (λ i → (pr1 (c i))))
( ind-Σ (λ i → (pr1 (pr2 (c i)))))
( ind-Σ (λ i → (pr2 (pr2 (c i)))))
triangle-descent-Σ :
(i : I) (a : A i) →
( map-fiber-vertical-map-cone (f i) h (c i) a) ~
( ( map-fiber-vertical-map-cone (ind-Σ f) h cone-descent-Σ (pair i a)) ∘
( map-inv-compute-fiber-tot (λ i → (pr1 (c i))) (pair i a)))
triangle-descent-Σ i .(pr1 (c i) a') (pair a' refl) = refl
abstract
descent-Σ :
((i : I) → is-pullback (f i) h (c i)) →
is-pullback (ind-Σ f) h cone-descent-Σ
descent-Σ is-pb-c =
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone
( ind-Σ f)
( h)
( cone-descent-Σ)
( ind-Σ
( λ i a →
is-equiv-right-map-triangle
( map-fiber-vertical-map-cone (f i) h (c i) a)
( map-fiber-vertical-map-cone (ind-Σ f) h cone-descent-Σ (pair i a))
( map-inv-compute-fiber-tot (λ i → pr1 (c i)) (pair i a))
( triangle-descent-Σ i a)
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
(f i) h (c i) (is-pb-c i) a)
( is-equiv-map-inv-compute-fiber-tot (λ i → pr1 (c i)) (pair i a))))
abstract
descent-Σ' :
is-pullback (ind-Σ f) h cone-descent-Σ →
((i : I) → is-pullback (f i) h (c i))
descent-Σ' is-pb-dsq i =
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone (f i) h (c i)
( λ a →
is-equiv-left-map-triangle
( map-fiber-vertical-map-cone (f i) h (c i) a)
( map-fiber-vertical-map-cone (ind-Σ f) h cone-descent-Σ (pair i a))
( map-inv-compute-fiber-tot (λ i → pr1 (c i)) (pair i a))
( triangle-descent-Σ i a)
( is-equiv-map-inv-compute-fiber-tot (λ i → pr1 (c i)) (pair i a))
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
( ind-Σ f)
( h)
( cone-descent-Σ)
( is-pb-dsq)
( pair i a)))
```