# Descent for the empty type
```agda
module foundation.descent-empty-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.empty-types
open import foundation-core.pullbacks
```
</details>
## Theorem
```agda
module _
{l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} (g : B → X)
where
cone-empty : is-empty C → (C → B) → cone ex-falso g C
pr1 (cone-empty p q) = p
pr1 (pr2 (cone-empty p q)) = q
pr2 (pr2 (cone-empty p q)) c = ex-falso (p c)
abstract
descent-empty : (c : cone ex-falso g C) → is-pullback ex-falso g c
descent-empty c =
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone _ g c ind-empty
abstract
descent-empty' :
(p : C → empty) (q : C → B) → is-pullback ex-falso g (cone-empty p q)
descent-empty' p q = descent-empty (cone-empty p q)
```