# Equality of coproduct types
```agda
module foundation.equality-coproduct-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.negated-equality
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.embeddings
open import foundation-core.empty-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.sets
open import foundation-core.torsorial-type-families
open import foundation-core.truncated-types
open import foundation-core.truncation-levels
```
</details>
## Idea
In order to construct an identification `Id x y` in a coproduct `coproduct A B`,
both `x` and `y` must be of the form `inl _` or of the form `inr _`. If that is
the case, then an identification can be constructed by constructin an
identification in A or in B, according to the case. This leads to the
characterization of identity types of coproducts.
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
data Eq-coproduct : A + B → A + B → UU (l1 ⊔ l2)
where
Eq-eq-coproduct-inl : {x y : A} → x = y → Eq-coproduct (inl x) (inl y)
Eq-eq-coproduct-inr : {x y : B} → x = y → Eq-coproduct (inr x) (inr y)
```
## Properties
### The type `Eq-coproduct x y` is equivalent to `Id x y`
We will use the fundamental theorem of identity types.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
refl-Eq-coproduct : (x : A + B) → Eq-coproduct x x
refl-Eq-coproduct (inl x) = Eq-eq-coproduct-inl refl
refl-Eq-coproduct (inr x) = Eq-eq-coproduct-inr refl
Eq-eq-coproduct : (x y : A + B) → x = y → Eq-coproduct x y
Eq-eq-coproduct x .x refl = refl-Eq-coproduct x
eq-Eq-coproduct : (x y : A + B) → Eq-coproduct x y → x = y
eq-Eq-coproduct .(inl x) .(inl x) (Eq-eq-coproduct-inl {x} {.x} refl) = refl
eq-Eq-coproduct .(inr x) .(inr x) (Eq-eq-coproduct-inr {x} {.x} refl) = refl
is-torsorial-Eq-coproduct :
(x : A + B) → is-torsorial (Eq-coproduct x)
pr1 (pr1 (is-torsorial-Eq-coproduct (inl x))) = inl x
pr2 (pr1 (is-torsorial-Eq-coproduct (inl x))) = Eq-eq-coproduct-inl refl
pr2
( is-torsorial-Eq-coproduct (inl x)) (.(inl x) , Eq-eq-coproduct-inl refl) =
refl
pr1 (pr1 (is-torsorial-Eq-coproduct (inr x))) = inr x
pr2 (pr1 (is-torsorial-Eq-coproduct (inr x))) = Eq-eq-coproduct-inr refl
pr2
( is-torsorial-Eq-coproduct (inr x)) (.(inr x) , Eq-eq-coproduct-inr refl) =
refl
is-equiv-Eq-eq-coproduct : (x y : A + B) → is-equiv (Eq-eq-coproduct x y)
is-equiv-Eq-eq-coproduct x =
fundamental-theorem-id (is-torsorial-Eq-coproduct x) (Eq-eq-coproduct x)
extensionality-coproduct : (x y : A + B) → (x = y) ≃ Eq-coproduct x y
pr1 (extensionality-coproduct x y) = Eq-eq-coproduct x y
pr2 (extensionality-coproduct x y) = is-equiv-Eq-eq-coproduct x y
```
Now we use the characterization of the identity type to obtain the desired
equivalences.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
module _
(x y : A)
where
map-compute-Eq-coproduct-inl-inl :
Eq-coproduct {B = B} (inl x) (inl y) → (x = y)
map-compute-Eq-coproduct-inl-inl (Eq-eq-coproduct-inl p) = p
is-section-Eq-eq-coproduct-inl :
(map-compute-Eq-coproduct-inl-inl ∘ Eq-eq-coproduct-inl) ~ id
is-section-Eq-eq-coproduct-inl p = refl
is-retraction-Eq-eq-coproduct-inl :
(Eq-eq-coproduct-inl ∘ map-compute-Eq-coproduct-inl-inl) ~ id
is-retraction-Eq-eq-coproduct-inl (Eq-eq-coproduct-inl p) = refl
is-equiv-map-compute-Eq-coproduct-inl-inl :
is-equiv map-compute-Eq-coproduct-inl-inl
is-equiv-map-compute-Eq-coproduct-inl-inl =
is-equiv-is-invertible
( Eq-eq-coproduct-inl)
( is-section-Eq-eq-coproduct-inl)
( is-retraction-Eq-eq-coproduct-inl)
compute-Eq-coproduct-inl-inl : Eq-coproduct (inl x) (inl y) ≃ (x = y)
pr1 compute-Eq-coproduct-inl-inl = map-compute-Eq-coproduct-inl-inl
pr2 compute-Eq-coproduct-inl-inl = is-equiv-map-compute-Eq-coproduct-inl-inl
compute-eq-coproduct-inl-inl : Id {A = A + B} (inl x) (inl y) ≃ (x = y)
compute-eq-coproduct-inl-inl =
compute-Eq-coproduct-inl-inl ∘e extensionality-coproduct (inl x) (inl y)
map-compute-eq-coproduct-inl-inl : Id {A = A + B} (inl x) (inl y) → x = y
map-compute-eq-coproduct-inl-inl = map-equiv compute-eq-coproduct-inl-inl
module _
(x : A) (y : B)
where
map-compute-Eq-coproduct-inl-inr : Eq-coproduct (inl x) (inr y) → empty
map-compute-Eq-coproduct-inl-inr ()
is-equiv-map-compute-Eq-coproduct-inl-inr :
is-equiv map-compute-Eq-coproduct-inl-inr
is-equiv-map-compute-Eq-coproduct-inl-inr =
is-equiv-is-empty' map-compute-Eq-coproduct-inl-inr
compute-Eq-coproduct-inl-inr : Eq-coproduct (inl x) (inr y) ≃ empty
pr1 compute-Eq-coproduct-inl-inr = map-compute-Eq-coproduct-inl-inr
pr2 compute-Eq-coproduct-inl-inr = is-equiv-map-compute-Eq-coproduct-inl-inr
compute-eq-coproduct-inl-inr : Id {A = A + B} (inl x) (inr y) ≃ empty
compute-eq-coproduct-inl-inr =
compute-Eq-coproduct-inl-inr ∘e extensionality-coproduct (inl x) (inr y)
is-empty-eq-coproduct-inl-inr : is-empty (Id {A = A + B} (inl x) (inr y))
is-empty-eq-coproduct-inl-inr = map-equiv compute-eq-coproduct-inl-inr
module _
(x : B) (y : A)
where
map-compute-Eq-coproduct-inr-inl : Eq-coproduct (inr x) (inl y) → empty
map-compute-Eq-coproduct-inr-inl ()
is-equiv-map-compute-Eq-coproduct-inr-inl :
is-equiv map-compute-Eq-coproduct-inr-inl
is-equiv-map-compute-Eq-coproduct-inr-inl =
is-equiv-is-empty' map-compute-Eq-coproduct-inr-inl
compute-Eq-coproduct-inr-inl : Eq-coproduct (inr x) (inl y) ≃ empty
pr1 compute-Eq-coproduct-inr-inl = map-compute-Eq-coproduct-inr-inl
pr2 compute-Eq-coproduct-inr-inl = is-equiv-map-compute-Eq-coproduct-inr-inl
compute-eq-coproduct-inr-inl : Id {A = A + B} (inr x) (inl y) ≃ empty
compute-eq-coproduct-inr-inl =
compute-Eq-coproduct-inr-inl ∘e extensionality-coproduct (inr x) (inl y)
is-empty-eq-coproduct-inr-inl : is-empty (Id {A = A + B} (inr x) (inl y))
is-empty-eq-coproduct-inr-inl = map-equiv compute-eq-coproduct-inr-inl
module _
(x y : B)
where
map-compute-Eq-coproduct-inr-inr :
Eq-coproduct {A = A} (inr x) (inr y) → x = y
map-compute-Eq-coproduct-inr-inr (Eq-eq-coproduct-inr p) = p
is-section-Eq-eq-coproduct-inr :
(map-compute-Eq-coproduct-inr-inr ∘ Eq-eq-coproduct-inr) ~ id
is-section-Eq-eq-coproduct-inr p = refl
is-retraction-Eq-eq-coproduct-inr :
(Eq-eq-coproduct-inr ∘ map-compute-Eq-coproduct-inr-inr) ~ id
is-retraction-Eq-eq-coproduct-inr (Eq-eq-coproduct-inr p) = refl
is-equiv-map-compute-Eq-coproduct-inr-inr :
is-equiv map-compute-Eq-coproduct-inr-inr
is-equiv-map-compute-Eq-coproduct-inr-inr =
is-equiv-is-invertible
( Eq-eq-coproduct-inr)
( is-section-Eq-eq-coproduct-inr)
( is-retraction-Eq-eq-coproduct-inr)
compute-Eq-coproduct-inr-inr : Eq-coproduct (inr x) (inr y) ≃ (x = y)
pr1 compute-Eq-coproduct-inr-inr = map-compute-Eq-coproduct-inr-inr
pr2 compute-Eq-coproduct-inr-inr = is-equiv-map-compute-Eq-coproduct-inr-inr
compute-eq-coproduct-inr-inr : Id {A = A + B} (inr x) (inr y) ≃ (x = y)
compute-eq-coproduct-inr-inr =
compute-Eq-coproduct-inr-inr ∘e extensionality-coproduct (inr x) (inr y)
map-compute-eq-coproduct-inr-inr : Id {A = A + B} (inr x) (inr y) → x = y
map-compute-eq-coproduct-inr-inr = map-equiv compute-eq-coproduct-inr-inr
```
### The left and right inclusions into a coproduct are embeddings
```agda
module _
{l1 l2 : Level} (A : UU l1) (B : UU l2)
where
abstract
is-emb-inl : is-emb (inl {A = A} {B = B})
is-emb-inl x =
fundamental-theorem-id
( is-contr-equiv
( Σ A (Id x))
( equiv-tot (compute-eq-coproduct-inl-inl x))
( is-torsorial-Id x))
( λ y → ap inl)
emb-inl : A ↪ (A + B)
pr1 emb-inl = inl
pr2 emb-inl = is-emb-inl
abstract
is-emb-inr : is-emb (inr {A = A} {B = B})
is-emb-inr x =
fundamental-theorem-id
( is-contr-equiv
( Σ B (Id x))
( equiv-tot (compute-eq-coproduct-inr-inr x))
( is-torsorial-Id x))
( λ y → ap inr)
emb-inr : B ↪ (A + B)
pr1 emb-inr = inr
pr2 emb-inr = is-emb-inr
```
Moreover, `is-injective-inl` and `is-injective-inr` are the inverses.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-retraction-is-injective-inl :
{x y : A} →
is-retraction (ap (inl {A = A} {B = B}) {x} {y}) (is-injective-inl)
is-retraction-is-injective-inl refl = refl
is-section-is-injective-inl :
{x y : A} →
is-section (ap (inl {A = A} {B = B}) {x} {y}) (is-injective-inl)
is-section-is-injective-inl refl = refl
is-retraction-is-injective-inr :
{x y : B} →
is-retraction (ap (inr {A = A} {B = B}) {x} {y}) (is-injective-inr)
is-retraction-is-injective-inr refl = refl
is-section-is-injective-inr :
{x y : B} →
is-section (ap (inr {A = A} {B = B}) {x} {y}) (is-injective-inr)
is-section-is-injective-inr refl = refl
```
### A map `A + B → C` defined by maps `f : A → C` and `B → C` is an embedding if both `f` and `g` are embeddings and they don't overlap
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : A → C} {g : B → C}
where
is-emb-coproduct :
is-emb f → is-emb g → ((a : A) (b : B) → f a ≠ g b) →
is-emb (rec-coproduct f g)
is-emb-coproduct H K L (inl a) (inl a') =
is-equiv-right-map-triangle
( ap f)
( ap (rec-coproduct f g))
( ap inl)
( ap-comp (rec-coproduct f g) inl)
( H a a')
( is-emb-inl A B a a')
is-emb-coproduct H K L (inl a) (inr b') =
is-equiv-is-empty (ap (rec-coproduct f g)) (L a b')
is-emb-coproduct H K L (inr b) (inl a') =
is-equiv-is-empty (ap (rec-coproduct f g)) (L a' b ∘ inv)
is-emb-coproduct H K L (inr b) (inr b') =
is-equiv-right-map-triangle
( ap g)
( ap (rec-coproduct f g))
( ap inr)
( ap-comp (rec-coproduct f g) inr)
( K b b')
( is-emb-inr A B b b')
```
### Coproducts of `k+2`-truncated types are `k+2`-truncated
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
where
abstract
is-trunc-coproduct :
is-trunc (succ-𝕋 (succ-𝕋 k)) A → is-trunc (succ-𝕋 (succ-𝕋 k)) B →
is-trunc (succ-𝕋 (succ-𝕋 k)) (A + B)
is-trunc-coproduct is-trunc-A is-trunc-B (inl x) (inl y) =
is-trunc-equiv (succ-𝕋 k)
( x = y)
( compute-eq-coproduct-inl-inl x y)
( is-trunc-A x y)
is-trunc-coproduct is-trunc-A is-trunc-B (inl x) (inr y) =
is-trunc-is-empty k (is-empty-eq-coproduct-inl-inr x y)
is-trunc-coproduct is-trunc-A is-trunc-B (inr x) (inl y) =
is-trunc-is-empty k (is-empty-eq-coproduct-inr-inl x y)
is-trunc-coproduct is-trunc-A is-trunc-B (inr x) (inr y) =
is-trunc-equiv (succ-𝕋 k)
( x = y)
( compute-eq-coproduct-inr-inr x y)
( is-trunc-B x y)
```
### Coproducts of sets are sets
```agda
abstract
is-set-coproduct :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-set A → is-set B → is-set (A + B)
is-set-coproduct = is-trunc-coproduct neg-two-𝕋
coproduct-Set :
{l1 l2 : Level} (A : Set l1) (B : Set l2) → Set (l1 ⊔ l2)
pr1 (coproduct-Set (A , is-set-A) (B , is-set-B)) = A + B
pr2 (coproduct-Set (A , is-set-A) (B , is-set-B)) =
is-set-coproduct is-set-A is-set-B
```
## See also
- Equality proofs in coproduct types are characterized in
[`foundation.equality-coproduct-types`](foundation.equality-coproduct-types.md).
- Equality proofs in dependent pair types are characterized in
[`foundation.equality-dependent-pair-types`](foundation.equality-dependent-pair-types.md).