# Functorialty of pullbacks
```agda
module foundation.functoriality-pullbacks where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.morphisms-cospan-diagrams
open import foundation.standard-pullbacks
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.identity-types
open import foundation-core.pullbacks
```
</details>
## Idea
The construction of the [standard pullback](foundation-core.pullbacks.md) is
functorial.
## Definitions
### The functorial action on maps of pullbacks
```agda
module _
{l1 l2 l3 l1' l2' l3' : Level}
{A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X)
{A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X')
where
map-standard-pullback :
hom-cospan-diagram f' g' f g →
standard-pullback f' g' → standard-pullback f g
pr1 (map-standard-pullback (hA , _) (a' , _)) = hA a'
pr1 (pr2 (map-standard-pullback (hA , hB , _) (a' , b' , _))) = hB b'
pr2 (pr2 (map-standard-pullback (hA , hB , hX , HA , HB) (a' , b' , p'))) =
HA a' ∙ ap hX p' ∙ inv (HB b')
map-is-pullback :
{l4 l4' : Level} {C : UU l4} {C' : UU l4'} →
(c : cone f g C) (c' : cone f' g' C') →
is-pullback f g c → is-pullback f' g' c' →
hom-cospan-diagram f' g' f g → C' → C
map-is-pullback c c' is-pb-c is-pb-c' h x =
map-inv-is-equiv is-pb-c (map-standard-pullback h (gap f' g' c' x))
```
## Table of files about pullbacks
The following table lists files that are about pullbacks as a general concept.
{{#include tables/pullbacks.md}}