# Functoriality of sequential limits
```agda
module foundation.functoriality-sequential-limits where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.action-on-identifications-functions
open import foundation.cones-over-inverse-sequential-diagrams
open import foundation.dependent-pair-types
open import foundation.inverse-sequential-diagrams
open import foundation.morphisms-inverse-sequential-diagrams
open import foundation.sequential-limits
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.identity-types
```
</details>
## Idea
The construction of the [sequential limit](foundation.sequential-limits.md) is
functorial.
## Definitions
### The functorial action on maps of standard sequential limits
```agda
module _
{l1 l2 : Level}
{A : inverse-sequential-diagram l1} {A' : inverse-sequential-diagram l2}
where
map-hom-standard-sequential-limit :
hom-inverse-sequential-diagram A' A →
standard-sequential-limit A' →
standard-sequential-limit A
pr1 (map-hom-standard-sequential-limit (f , F) (x , H)) n = f n (x n)
pr2 (map-hom-standard-sequential-limit (f , F) (x , H)) n =
ap (f n) (H n) ∙ F n (x (succ-ℕ n))
map-hom-is-sequential-limit :
{l4 l4' : Level} {C : UU l4} {C' : UU l4'} →
(c : cone-inverse-sequential-diagram A C)
(c' : cone-inverse-sequential-diagram A' C') →
is-sequential-limit A c → is-sequential-limit A' c' →
hom-inverse-sequential-diagram A' A → C' → C
map-hom-is-sequential-limit c c' is-lim-c is-lim-c' h x =
map-inv-is-equiv
( is-lim-c)
( map-hom-standard-sequential-limit h
( gap-inverse-sequential-diagram A' c' x))
```
## Table of files about sequential limits
The following table lists files that are about sequential limits as a general
concept.
{{#include tables/sequential-limits.md}}