# Implicit function types
```agda
module foundation.implicit-function-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.homotopies
open import foundation-core.identity-types
```
</details>
## Properties
### Dependent function types taking implicit arguments are equivalent to dependent function types taking explicit arguments
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
implicit-explicit-Π : ((x : A) → B x) → {x : A} → B x
implicit-explicit-Π f {x} = f x
explicit-implicit-Π : ({x : A} → B x) → (x : A) → B x
explicit-implicit-Π f x = f {x}
is-equiv-implicit-explicit-Π : is-equiv implicit-explicit-Π
pr1 (pr1 is-equiv-implicit-explicit-Π) = explicit-implicit-Π
pr2 (pr1 is-equiv-implicit-explicit-Π) = refl-htpy
pr1 (pr2 is-equiv-implicit-explicit-Π) = explicit-implicit-Π
pr2 (pr2 is-equiv-implicit-explicit-Π) = refl-htpy
is-equiv-explicit-implicit-Π : is-equiv explicit-implicit-Π
pr1 (pr1 is-equiv-explicit-implicit-Π) = implicit-explicit-Π
pr2 (pr1 is-equiv-explicit-implicit-Π) = refl-htpy
pr1 (pr2 is-equiv-explicit-implicit-Π) = implicit-explicit-Π
pr2 (pr2 is-equiv-explicit-implicit-Π) = refl-htpy
equiv-implicit-explicit-Π : ((x : A) → B x) ≃ ({x : A} → B x)
pr1 equiv-implicit-explicit-Π = implicit-explicit-Π
pr2 equiv-implicit-explicit-Π = is-equiv-implicit-explicit-Π
equiv-explicit-implicit-Π : ({x : A} → B x) ≃ ((x : A) → B x)
pr1 equiv-explicit-implicit-Π = explicit-implicit-Π
pr2 equiv-explicit-implicit-Π = is-equiv-explicit-implicit-Π
```
### Equality of explicit functions is equality of implicit functions
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
{f g : (x : A) → B x}
where
equiv-eq-implicit-eq-explicit-Π : (f = g) ≃ (Id (λ {x} → f x) (λ {x} → g x))
equiv-eq-implicit-eq-explicit-Π = equiv-ap equiv-implicit-explicit-Π f g
eq-implicit-eq-explicit-Π : (f = g) → (Id (λ {x} → f x) (λ {x} → g x))
eq-implicit-eq-explicit-Π = map-equiv equiv-eq-implicit-eq-explicit-Π
equiv-eq-explicit-eq-implicit-Π : (Id (λ {x} → f x) (λ {x} → g x)) ≃ (f = g)
equiv-eq-explicit-eq-implicit-Π =
equiv-ap equiv-explicit-implicit-Π (λ {x} → f x) (λ {x} → g x)
eq-explicit-eq-implicit-Π : (Id (λ {x} → f x) (λ {x} → g x)) → (f = g)
eq-explicit-eq-implicit-Π = map-equiv equiv-eq-explicit-eq-implicit-Π
```
## See also
- Function extensionality for implicit function types is established in
[`foundation.function-extensionality`](foundation.function-extensionality.md).