# Lawvere's fixed point theorem
```agda
module foundation.lawveres-fixed-point-theorem where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.function-extensionality
open import foundation.propositional-truncations
open import foundation.surjective-maps
open import foundation.universe-levels
open import foundation-core.identity-types
```
</details>
## Idea
{{#concept "Lawvere's fixed point theorem" Agda=fixed-point-theorem-Lawvere}}
asserts that if there is a [surjective map](foundation.surjective-maps.md)
`A → (A → B)`, then any map `B → B` must have a fixed point.
## Theorem
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → A → B}
where
abstract
fixed-point-theorem-Lawvere :
is-surjective f → (h : B → B) → exists-structure B (λ b → h b = b)
fixed-point-theorem-Lawvere H h =
apply-universal-property-trunc-Prop
( H g)
( exists-structure-Prop B (λ b → h b = b))
( λ (x , p) → intro-exists (f x x) (inv (htpy-eq p x)))
where
g : A → B
g a = h (f a a)
```