# Mere functions
```agda
module foundation.mere-functions where
```
<details><summary>Imports</summary>
```agda
open import foundation.propositional-truncations
open import foundation.universe-levels
open import foundation-core.function-types
open import foundation-core.propositions
```
</details>
## Idea
The type of
{{#concept "mere functions" Disambiguation="of types" Agda=mere-function}} from
`A` to `B` is the
[propositional truncation](foundation.propositional-truncations.md) of the type
of maps from `A` to `B`.
```text
mere-function A B := ║(A → B)║₋₁
```
## Definitions
### Mere functions between types
```agda
module _
{l1 l2 : Level} (A : UU l1) (B : UU l2)
where
prop-mere-function : Prop (l1 ⊔ l2)
prop-mere-function = trunc-Prop (A → B)
mere-function : UU (l1 ⊔ l2)
mere-function = type-Prop prop-mere-function
is-prop-mere-function : is-prop mere-function
is-prop-mere-function = is-prop-type-Prop prop-mere-function
```
### The evaluation map on mere functions
If we have a mere function from `A` to `B` and `A` is inhabited, then `B` is
inhabited.
```agda
module _
{l1 l2 : Level} (A : UU l1) (B : UU l2)
where
ev-mere-function' : (mere-function A B) → A → ║ B ║₋₁
ev-mere-function' |f| a =
rec-trunc-Prop (trunc-Prop B) (λ f → unit-trunc-Prop (f a)) |f|
ev-mere-function : (mere-function A B) → ║ A ║₋₁ → ║ B ║₋₁
ev-mere-function |f| |a| =
rec-trunc-Prop (trunc-Prop B) (ev-mere-function' |f|) (|a|)
```
### Mere functions form a reflexive relation
```agda
module _
{l : Level} (A : UU l)
where
refl-mere-function : mere-function A A
refl-mere-function = unit-trunc-Prop id
```
### Mere functions form a transitive relation
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
where
transitive-mere-function :
mere-function B C → mere-function A B → mere-function A C
transitive-mere-function |g| =
rec-trunc-Prop
( prop-mere-function A C)
( λ f →
rec-trunc-Prop
( prop-mere-function A C)
( λ g → unit-trunc-Prop (g ∘ f))
( |g|))
```
## See also
- [Mere logical equivalences](foundation.mere-logical-equivalences.md)