# Monomorphisms
```agda
module foundation.monomorphisms where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.function-extensionality
open import foundation.functoriality-function-types
open import foundation.postcomposition-functions
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.truncation-levels
```
</details>
## Idea
A function `f : A → B` is a monomorphism if whenever we have two functions
`g h : X → A` such that `f ∘ g = f ∘ h`, then in fact `g = h`. The way to state
this in Homotopy Type Theory is to say that postcomposition by `f` is an
embedding.
## Definition
```agda
module _
{l1 l2 : Level} (l3 : Level)
{A : UU l1} {B : UU l2} (f : A → B)
where
is-mono-Prop : Prop (l1 ⊔ l2 ⊔ lsuc l3)
is-mono-Prop = Π-Prop (UU l3) λ X → is-emb-Prop (postcomp X f)
is-mono : UU (l1 ⊔ l2 ⊔ lsuc l3)
is-mono = type-Prop is-mono-Prop
is-prop-is-mono : is-prop is-mono
is-prop-is-mono = is-prop-type-Prop is-mono-Prop
```
## Properties
If `f : A → B` is a monomorphism then for any `g h : X → A` we have an
equivalence `(f ∘ g = f ∘ h) ≃ (g = h)`. In particular, if `f ∘ g = f ∘ h` then
`g = h`.
```agda
module _
{l1 l2 : Level} (l3 : Level)
{A : UU l1} {B : UU l2} (f : A → B)
(p : is-mono l3 f) {X : UU l3} (g h : X → A)
where
equiv-postcomp-is-mono : (g = h) ≃ ((f ∘ g) = (f ∘ h))
pr1 equiv-postcomp-is-mono = ap (f ∘_)
pr2 equiv-postcomp-is-mono = p X g h
is-injective-postcomp-is-mono : (f ∘ g) = (f ∘ h) → g = h
is-injective-postcomp-is-mono = map-inv-equiv equiv-postcomp-is-mono
```
A function is a monomorphism if and only if it is an embedding.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
is-mono-is-emb : is-emb f → {l3 : Level} → is-mono l3 f
is-mono-is-emb is-emb-f X =
is-emb-is-prop-map
( is-trunc-map-postcomp-is-trunc-map neg-one-𝕋 f
( is-prop-map-is-emb is-emb-f)
( X))
is-emb-is-mono : ({l3 : Level} → is-mono l3 f) → is-emb f
is-emb-is-mono is-mono-f =
is-emb-is-prop-map
( is-trunc-map-is-trunc-map-postcomp neg-one-𝕋 f
( λ X → is-prop-map-is-emb (is-mono-f X)))
```
We construct an explicit equivalence for postcomposition for homotopies between
functions (rather than equality) when the map is an embedding.
```agda
module _
{l1 l2 l3 : Level}
{A : UU l1} {B : UU l2} (f : A ↪ B)
{X : UU l3} (g h : X → A)
where
map-inv-equiv-htpy-postcomp-is-emb :
(pr1 f ∘ g) ~ (pr1 f ∘ h) → g ~ h
map-inv-equiv-htpy-postcomp-is-emb H x =
map-inv-is-equiv (pr2 f (g x) (h x)) (H x)
is-section-map-inv-equiv-htpy-postcomp-is-emb :
(pr1 f ·l_) ∘ map-inv-equiv-htpy-postcomp-is-emb ~ id
is-section-map-inv-equiv-htpy-postcomp-is-emb H =
eq-htpy (λ x →
is-section-map-inv-is-equiv (pr2 f (g x) (h x)) (H x))
is-retraction-map-inv-equiv-htpy-postcomp-is-emb :
map-inv-equiv-htpy-postcomp-is-emb ∘ (pr1 f ·l_) ~ id
is-retraction-map-inv-equiv-htpy-postcomp-is-emb H =
eq-htpy (λ x →
is-retraction-map-inv-is-equiv (pr2 f (g x) (h x)) (H x))
equiv-htpy-postcomp-is-emb :
(g ~ h) ≃ ((pr1 f ∘ g) ~ (pr1 f ∘ h))
pr1 equiv-htpy-postcomp-is-emb = pr1 f ·l_
pr2 equiv-htpy-postcomp-is-emb =
is-equiv-is-invertible
map-inv-equiv-htpy-postcomp-is-emb
is-section-map-inv-equiv-htpy-postcomp-is-emb
is-retraction-map-inv-equiv-htpy-postcomp-is-emb
```