# Multivariable correspondences
```agda
module foundation.multivariable-correspondences where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.universe-levels
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
Consider a family of types `A` indexed by `Fin n`. An `n`-ary correspondence of
tuples `(x₁,...,x_n)` where `x_i : A_i` is a type family over
`(i : Fin n) → A i`.
## Definition
```agda
multivariable-correspondence :
{l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2)
multivariable-correspondence l2 n A = ((i : Fin n) → A i) → UU l2
```