# Product decompositions
```agda
module foundation.product-decompositions where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.equivalences
```
</details>
## Definitions
### Binary product decomposition
```agda
module _
{l1 : Level} (l2 l3 : Level) (X : UU l1)
where
binary-product-Decomposition : UU (l1 ⊔ lsuc l2 ⊔ lsuc l3)
binary-product-Decomposition =
Σ (UU l2) (λ A → Σ (UU l3) (λ B → X ≃ (A × B)))
module _
{l1 l2 l3 : Level} {X : UU l1}
(d : binary-product-Decomposition l2 l3 X)
where
left-summand-binary-product-Decomposition : UU l2
left-summand-binary-product-Decomposition = pr1 d
right-summand-binary-product-Decomposition : UU l3
right-summand-binary-product-Decomposition = pr1 (pr2 d)
matching-correspondence-binary-product-Decomposition :
X ≃
( left-summand-binary-product-Decomposition ×
right-summand-binary-product-Decomposition)
matching-correspondence-binary-product-Decomposition = pr2 (pr2 d)
```