# Products of binary relations
```agda
module foundation.products-binary-relations where
```
<details><summary>Imports</summary>
```agda
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.propositions
```
</details>
## Idea
Given two relations `R` and `S`, their product is given by
`(R × S) (a , b) (a' , b')` iff `R a a'` and `S b b'`.
## Definition
### The product of two relations
```agda
module _
{l1 l2 l3 l4 : Level}
{A : UU l1} (R : Relation-Prop l2 A)
{B : UU l3} (S : Relation-Prop l4 B)
where
product-Relation-Prop :
Relation-Prop (l2 ⊔ l4) (A × B)
product-Relation-Prop (a , b) (a' , b') =
product-Prop
( R a a')
( S b b')
```