# Products of unordered pairs of types
```agda
module foundation.products-unordered-pairs-of-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.dependent-universal-property-equivalences
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-dependent-function-types
open import foundation.symmetric-operations
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import foundation.unordered-pairs
open import foundation.unordered-pairs-of-types
open import foundation-core.cartesian-product-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import univalent-combinatorics.2-element-types
open import univalent-combinatorics.universal-property-standard-finite-types
```
</details>
## Idea
Given an unordered pair of types, we can take their product. This is a symmetric
version of the cartesian product operation on types.
## Definition
```agda
product-unordered-pair-types :
{l : Level} → symmetric-operation (UU l) (UU l)
product-unordered-pair-types p =
(x : type-unordered-pair p) → element-unordered-pair p x
pr-product-unordered-pair-types :
{l : Level} (p : unordered-pair-types l) (i : type-unordered-pair p) →
product-unordered-pair-types p → element-unordered-pair p i
pr-product-unordered-pair-types p i f = f i
equiv-pr-product-unordered-pair-types :
{l : Level} (A : unordered-pair-types l) (i : type-unordered-pair A) →
product-unordered-pair-types A ≃
(element-unordered-pair A i × other-element-unordered-pair A i)
equiv-pr-product-unordered-pair-types A i =
( ( equiv-product
( equiv-tr
( element-unordered-pair A)
( compute-map-equiv-point-2-Element-Type
( 2-element-type-unordered-pair A)
( i)))
( equiv-tr
( element-unordered-pair A)
( compute-map-equiv-point-2-Element-Type'
( 2-element-type-unordered-pair A)
( i)))) ∘e
( equiv-dependent-universal-property-Fin-two-ℕ
( ( element-unordered-pair A) ∘
( map-equiv-point-2-Element-Type
( 2-element-type-unordered-pair A)
( i))))) ∘e
( equiv-precomp-Π
( equiv-point-2-Element-Type (2-element-type-unordered-pair A) (i))
( element-unordered-pair A))
equiv-pair-product-unordered-pair-types :
{l : Level} (A : unordered-pair-types l) (i : type-unordered-pair A) →
(element-unordered-pair A i × other-element-unordered-pair A i) ≃
product-unordered-pair-types A
equiv-pair-product-unordered-pair-types A i =
inv-equiv (equiv-pr-product-unordered-pair-types A i)
pair-product-unordered-pair-types :
{l : Level} (A : unordered-pair-types l) (i : type-unordered-pair A) →
element-unordered-pair A i → other-element-unordered-pair A i →
product-unordered-pair-types A
pair-product-unordered-pair-types A i x y =
map-equiv (equiv-pair-product-unordered-pair-types A i) (pair x y)
```
### Equivalences of products of unordered pairs of types
```agda
module _
{l1 l2 : Level} (A : unordered-pair-types l1) (B : unordered-pair-types l2)
where
equiv-product-unordered-pair-types :
equiv-unordered-pair-types A B →
product-unordered-pair-types A ≃ product-unordered-pair-types B
equiv-product-unordered-pair-types e =
equiv-Π
( element-unordered-pair B)
( equiv-type-equiv-unordered-pair-types A B e)
( equiv-element-equiv-unordered-pair-types A B e)
```