# Products of unordered tuples of types
```agda
module foundation.products-unordered-tuples-of-types where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.dependent-pair-types
open import foundation.functoriality-dependent-function-types
open import foundation.universal-property-maybe
open import foundation.universe-levels
open import foundation.unordered-tuples
open import foundation.unordered-tuples-of-types
open import foundation-core.cartesian-product-types
open import foundation-core.equivalences
open import univalent-combinatorics.complements-isolated-elements
```
</details>
## Idea
Given an unordered pair of types, we can take their product. This is a
commutative version of the cartesian product operation on types.
## Definition
```agda
product-unordered-tuple-types :
{l : Level} (n : ℕ) → unordered-tuple n (UU l) → (UU l)
product-unordered-tuple-types n p =
(x : type-unordered-tuple n p) → element-unordered-tuple n p x
pr-product-unordered-tuple-types :
{l : Level} (n : ℕ) (A : unordered-tuple-types l n)
(i : type-unordered-tuple n A) →
product-unordered-tuple-types n A → element-unordered-tuple n A i
pr-product-unordered-tuple-types n A i f = f i
equiv-pr-product-unordered-tuple-types :
{l : Level} (n : ℕ) (A : unordered-tuple-types l (succ-ℕ n))
(i : type-unordered-tuple (succ-ℕ n) A) →
( ( product-unordered-tuple-types n
( unordered-tuple-complement-point-type-unordered-tuple n A i)) ×
( element-unordered-tuple (succ-ℕ n) A i)) ≃
product-unordered-tuple-types (succ-ℕ n) A
equiv-pr-product-unordered-tuple-types n A i =
( equiv-Π
( element-unordered-tuple (succ-ℕ n) A)
( equiv-maybe-structure-element-UU-Fin n
( type-unordered-tuple-UU-Fin (succ-ℕ n) A) i)
( λ x → id-equiv)) ∘e
( inv-equiv
( equiv-dependent-universal-property-Maybe
( λ j →
element-unordered-tuple (succ-ℕ n) A
( map-equiv (equiv-maybe-structure-element-UU-Fin n
( type-unordered-tuple-UU-Fin (succ-ℕ n) A) i)
( j)))))
map-equiv-pr-product-unordered-tuple-types :
{l : Level} (n : ℕ) (A : unordered-tuple-types l (succ-ℕ n))
(i : type-unordered-tuple (succ-ℕ n) A) →
product-unordered-tuple-types n
( unordered-tuple-complement-point-type-unordered-tuple n A i) →
element-unordered-tuple (succ-ℕ n) A i →
product-unordered-tuple-types (succ-ℕ n) A
map-equiv-pr-product-unordered-tuple-types n A i f a =
map-equiv (equiv-pr-product-unordered-tuple-types n A i) (pair f a)
```
### Equivalences of products of unordered pairs of types
```agda
module _
{l1 l2 : Level} {n : ℕ} (A : unordered-tuple-types l1 n)
(B : unordered-tuple-types l2 n)
where
equiv-product-unordered-tuple-types :
equiv-unordered-tuple-types n A B →
product-unordered-tuple-types n A ≃ product-unordered-tuple-types n B
equiv-product-unordered-tuple-types e =
equiv-Π
( element-unordered-tuple n B)
( equiv-type-equiv-unordered-tuple-types n A B e)
( equiv-element-equiv-unordered-tuple-types n A B e)
```