# Reflecting maps for equivalence relations
```agda
module foundation.reflecting-maps-equivalence-relations where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.effective-maps-equivalence-relations
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.subtype-identity-principle
open import foundation.universe-levels
open import foundation-core.equivalence-relations
open import foundation-core.equivalences
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.sets
open import foundation-core.torsorial-type-families
```
</details>
## Idea
A map `f : A → B` out of a type `A` equipped with an equivalence relation `R` is
said to **reflect** `R` if we have `R x y → f x = f y` for every `x y : A`.
## Definitions
### Maps reflecting equivalence relations
```agda
module _
{l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A)
where
reflects-equivalence-relation :
{l3 : Level} {B : UU l3} → (A → B) → UU (l1 ⊔ l2 ⊔ l3)
reflects-equivalence-relation f =
{x y : A} → sim-equivalence-relation R x y → (f x = f y)
reflecting-map-equivalence-relation : {l3 : Level} → UU l3 → UU (l1 ⊔ l2 ⊔ l3)
reflecting-map-equivalence-relation B =
Σ (A → B) reflects-equivalence-relation
map-reflecting-map-equivalence-relation :
{l3 : Level} {B : UU l3} → reflecting-map-equivalence-relation B → A → B
map-reflecting-map-equivalence-relation = pr1
reflects-map-reflecting-map-equivalence-relation :
{l3 : Level} {B : UU l3} (f : reflecting-map-equivalence-relation B) →
reflects-equivalence-relation (map-reflecting-map-equivalence-relation f)
reflects-map-reflecting-map-equivalence-relation = pr2
is-prop-reflects-equivalence-relation :
{l3 : Level} (B : Set l3) (f : A → type-Set B) →
is-prop (reflects-equivalence-relation f)
is-prop-reflects-equivalence-relation B f =
is-prop-implicit-Π
( λ x →
is-prop-implicit-Π
( λ y →
is-prop-function-type (is-set-type-Set B (f x) (f y))))
reflects-prop-equivalence-relation :
{l3 : Level} (B : Set l3) (f : A → type-Set B) → Prop (l1 ⊔ l2 ⊔ l3)
pr1 (reflects-prop-equivalence-relation B f) = reflects-equivalence-relation f
pr2 (reflects-prop-equivalence-relation B f) =
is-prop-reflects-equivalence-relation B f
```
## Properties
### Any surjective and effective map reflects the equivalence relation
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3)
(q : A → type-Set B)
where
reflects-equivalence-relation-is-surjective-and-effective :
is-surjective-and-effective R q → reflects-equivalence-relation R q
reflects-equivalence-relation-is-surjective-and-effective E {x} {y} =
map-inv-equiv (pr2 E x y)
reflecting-map-equivalence-relation-is-surjective-and-effective :
is-surjective-and-effective R q →
reflecting-map-equivalence-relation R (type-Set B)
pr1 (reflecting-map-equivalence-relation-is-surjective-and-effective E) = q
pr2 (reflecting-map-equivalence-relation-is-surjective-and-effective E) =
reflects-equivalence-relation-is-surjective-and-effective E
```
### Characterizing the identity type of reflecting maps into sets
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3)
(f : reflecting-map-equivalence-relation R (type-Set B))
where
htpy-reflecting-map-equivalence-relation :
(g : reflecting-map-equivalence-relation R (type-Set B)) → UU (l1 ⊔ l3)
htpy-reflecting-map-equivalence-relation g =
pr1 f ~ pr1 g
refl-htpy-reflecting-map-equivalence-relation :
htpy-reflecting-map-equivalence-relation f
refl-htpy-reflecting-map-equivalence-relation = refl-htpy
htpy-eq-reflecting-map-equivalence-relation :
(g : reflecting-map-equivalence-relation R (type-Set B)) →
f = g → htpy-reflecting-map-equivalence-relation g
htpy-eq-reflecting-map-equivalence-relation .f refl =
refl-htpy-reflecting-map-equivalence-relation
is-torsorial-htpy-reflecting-map-equivalence-relation :
is-torsorial (htpy-reflecting-map-equivalence-relation)
is-torsorial-htpy-reflecting-map-equivalence-relation =
is-torsorial-Eq-subtype
( is-torsorial-htpy (pr1 f))
( is-prop-reflects-equivalence-relation R B)
( pr1 f)
( refl-htpy)
( pr2 f)
is-equiv-htpy-eq-reflecting-map-equivalence-relation :
(g : reflecting-map-equivalence-relation R (type-Set B)) →
is-equiv (htpy-eq-reflecting-map-equivalence-relation g)
is-equiv-htpy-eq-reflecting-map-equivalence-relation =
fundamental-theorem-id
is-torsorial-htpy-reflecting-map-equivalence-relation
htpy-eq-reflecting-map-equivalence-relation
extensionality-reflecting-map-equivalence-relation :
(g : reflecting-map-equivalence-relation R (type-Set B)) →
(f = g) ≃ htpy-reflecting-map-equivalence-relation g
pr1 (extensionality-reflecting-map-equivalence-relation g) =
htpy-eq-reflecting-map-equivalence-relation g
pr2 (extensionality-reflecting-map-equivalence-relation g) =
is-equiv-htpy-eq-reflecting-map-equivalence-relation g
eq-htpy-reflecting-map-equivalence-relation :
(g : reflecting-map-equivalence-relation R (type-Set B)) →
htpy-reflecting-map-equivalence-relation g → f = g
eq-htpy-reflecting-map-equivalence-relation g =
map-inv-is-equiv (is-equiv-htpy-eq-reflecting-map-equivalence-relation g)
```