# Reflexive relations
```agda
module foundation.reflexive-relations where
```
<details><summary>Imports</summary>
```agda
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.identity-types
```
</details>
## Idea
A {{#concept "reflexive relation" Agda=Reflexive-Relation}} on a type `A` is a
type-valued [binary relation](foundation.binary-relations.md) `R : A → A → 𝒰`
[equipped](foundation.structure.md) with a proof `r : (x : A) → R x x`.
## Definitions
### Reflexive relations
```agda
Reflexive-Relation :
{l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2)
Reflexive-Relation l2 A = Σ (Relation l2 A) (λ R → is-reflexive R)
module _
{l1 l2 : Level} {A : UU l1} (R : Reflexive-Relation l2 A)
where
rel-Reflexive-Relation : Relation l2 A
rel-Reflexive-Relation = pr1 R
is-reflexive-Reflexive-Relation : is-reflexive rel-Reflexive-Relation
is-reflexive-Reflexive-Relation = pr2 R
```
### The identity reflexive relation on a type
```agda
Id-Reflexive-Relation : {l : Level} (A : UU l) → Reflexive-Relation l A
Id-Reflexive-Relation A = (Id , (λ x → refl))
```