# Σ-closed subuniverses
```agda
module foundation.sigma-closed-subuniverses where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.subuniverses
open import foundation.universe-levels
open import foundation-core.function-types
```
</details>
## Idea
A [subuniverse](foundation.subuniverses.md) `P` is **Σ-closed** if it is closed
under the formation of [Σ-types](foundation.dependent-pair-types.md). Meaning
`P` is Σ-closed if `Σ A B` is in `P` whenever `B` is a family of types in `P`
over a type `A` in `P`.
## Definition
We state a general form involving three universes, and a more traditional form
using a single universe
```agda
is-closed-under-Σ-subuniverses :
{l1 l2 lP lQ lR : Level}
(P : subuniverse l1 lP)
(Q : subuniverse l2 lQ)
(R : subuniverse (l1 ⊔ l2) lR) →
UU (lsuc l1 ⊔ lsuc l2 ⊔ lP ⊔ lQ ⊔ lR)
is-closed-under-Σ-subuniverses P Q R =
(X : type-subuniverse P)
(Y : inclusion-subuniverse P X → type-subuniverse Q) →
is-in-subuniverse R
( Σ (inclusion-subuniverse P X) (inclusion-subuniverse Q ∘ Y))
is-closed-under-Σ-subuniverse :
{l lP : Level} → subuniverse l lP → UU (lsuc l ⊔ lP)
is-closed-under-Σ-subuniverse P = is-closed-under-Σ-subuniverses P P P
closed-under-Σ-subuniverse :
(l lP : Level) → UU (lsuc l ⊔ lsuc lP)
closed-under-Σ-subuniverse l lP =
Σ (subuniverse l lP) (is-closed-under-Σ-subuniverse)
```
## See also
- [Σ-closed reflective subuniverses](orthogonal-factorization-systems.sigma-closed-reflective-subuniverses.md)