# The structure identity principle
```agda
module foundation.structure-identity-principle where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.identity-types
open import foundation-core.torsorial-type-families
```
</details>
## Idea
[Structure](foundation.structure.md) is presented in type theory by
[dependent pair types](foundation.dependent-pair-types.md). The **structure
identity principle** is a way to characterize the
[identity type](foundation-core.identity-types.md) of a structure, using
characterizations of the identity types of its components.
## Lemma
```agda
module _
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
{ D : (x : A) → B x → C x → UU l4}
where
abstract
is-torsorial-Eq-structure :
(is-contr-AC : is-torsorial C) (t : Σ A C) →
is-torsorial (λ y → D (pr1 t) y (pr2 t)) →
is-torsorial (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t)))
is-torsorial-Eq-structure is-contr-AC t is-contr-BD =
is-contr-equiv
( Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))))
( interchange-Σ-Σ D)
( is-contr-Σ is-contr-AC t is-contr-BD)
```
## Theorem
### The structure identity principle
```agda
module _
{l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {Eq-A : A → UU l3}
(Eq-B : {x : A} → B x → Eq-A x → UU l4)
{a : A} {b : B a} (refl-A : Eq-A a) (refl-B : Eq-B b refl-A)
where
abstract
structure-identity-principle :
{f : (x : A) → a = x → Eq-A x}
{g : (y : B a) → b = y → Eq-B y refl-A} →
(h : (z : Σ A B) → (pair a b) = z → Σ (Eq-A (pr1 z)) (Eq-B (pr2 z))) →
((x : A) → is-equiv (f x)) → ((y : B a) → is-equiv (g y)) →
(z : Σ A B) → is-equiv (h z)
structure-identity-principle {f} {g} h H K =
fundamental-theorem-id
( is-torsorial-Eq-structure
( fundamental-theorem-id' f H)
( pair a refl-A)
( fundamental-theorem-id' g K))
( h)
map-extensionality-Σ :
(f : (x : A) → (a = x) ≃ Eq-A x)
(g : (y : B a) → (b = y) ≃ Eq-B y refl-A) →
(z : Σ A B) → pair a b = z → Σ (Eq-A (pr1 z)) (Eq-B (pr2 z))
pr1 (map-extensionality-Σ f g .(pair a b) refl) = refl-A
pr2 (map-extensionality-Σ f g .(pair a b) refl) = refl-B
extensionality-Σ :
(f : (x : A) → (a = x) ≃ Eq-A x)
(g : (y : B a) → (b = y) ≃ Eq-B y refl-A) →
(z : Σ A B) → (pair a b = z) ≃ Σ (Eq-A (pr1 z)) (Eq-B (pr2 z))
pr1 (extensionality-Σ f g z) = map-extensionality-Σ f g z
pr2 (extensionality-Σ f g z) =
structure-identity-principle
( map-extensionality-Σ f g)
( λ x → is-equiv-map-equiv (f x))
( λ y → is-equiv-map-equiv (g y))
( z)
```