# Uniqueness of the image of a map
```agda
module foundation.uniqueness-image where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.images
open import foundation.slice
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universal-property-image
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition
open import foundation-core.commuting-triangles-of-maps
open import foundation-core.contractible-types
open import foundation-core.embeddings
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.propositions
```
</details>
### Uniqueness of the image
```agda
module _
{l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X)
{B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i))
{B' : UU l4} (i' : B' ↪ X) (q' : hom-slice f (map-emb i'))
(h : hom-slice (map-emb i) (map-emb i'))
where
abstract
is-equiv-is-image-is-image :
is-image f i q →
is-image f i' q' →
is-equiv (map-hom-slice (map-emb i) (map-emb i') h)
is-equiv-is-image-is-image up-i up-i' =
is-equiv-hom-slice-emb i i' h (map-inv-is-equiv (up-i' B i) q)
abstract
is-image-is-image-is-equiv :
is-equiv (map-hom-slice (map-emb i) (map-emb i') h) →
is-image f i q →
is-image f i' q'
is-image-is-image-is-equiv is-equiv-h up-i {l} =
is-image-is-image' f i' q'
( λ C j r →
comp-hom-slice
( map-emb i')
( map-emb i)
( map-emb j)
( map-inv-is-equiv (up-i C j) r)
( pair
( map-inv-is-equiv is-equiv-h)
( triangle-section
( map-emb i)
( map-emb i')
( map-hom-slice (map-emb i) (map-emb i') h)
( triangle-hom-slice (map-emb i) (map-emb i') h)
( pair
( map-inv-is-equiv is-equiv-h)
( is-section-map-inv-is-equiv is-equiv-h)))))
abstract
is-image-is-equiv-is-image :
is-image f i' q' →
is-equiv (map-hom-slice (map-emb i) (map-emb i') h) →
is-image f i q
is-image-is-equiv-is-image up-i' is-equiv-h {l} =
is-image-is-image' f i q
( λ C j r →
comp-hom-slice
( map-emb i)
( map-emb i')
( map-emb j)
( map-inv-is-equiv (up-i' C j) r)
( h))
module _
{l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X)
{B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i))
(Hi : is-image f i q)
{B' : UU l4} (i' : B' ↪ X) (q' : hom-slice f (map-emb i'))
(Hi' : is-image f i' q')
where
abstract
uniqueness-image :
is-contr
( Σ ( equiv-slice (map-emb i) (map-emb i'))
( λ e →
htpy-hom-slice f
( map-emb i')
( comp-hom-slice f
( map-emb i)
( map-emb i')
( hom-equiv-slice (map-emb i) (map-emb i') e)
( q))
( q')))
uniqueness-image =
is-contr-equiv
( Σ ( Σ ( hom-slice (map-emb i) (map-emb i'))
( λ h →
htpy-hom-slice f
( map-emb i')
( comp-hom-slice f (map-emb i) (map-emb i') h q)
( q')))
( λ h → is-equiv (pr1 (pr1 h))))
( ( equiv-right-swap-Σ) ∘e
( equiv-Σ
( λ h →
htpy-hom-slice f
( map-emb i')
( comp-hom-slice f (map-emb i) (map-emb i') (pr1 h) q)
( q'))
( equiv-right-swap-Σ)
( λ ((e , E) , H) → id-equiv)))
( is-contr-equiv
( is-equiv
( map-hom-slice-universal-property-image f i q Hi i' q'))
( left-unit-law-Σ-is-contr
( universal-property-image f i q Hi i' q')
( center (universal-property-image f i q Hi i' q')))
( is-proof-irrelevant-is-prop
( is-property-is-equiv
( map-hom-slice-universal-property-image f i q Hi i' q'))
( is-equiv-is-image-is-image f i q i' q'
( hom-slice-universal-property-image f i q Hi i' q')
( Hi)
( Hi'))))
equiv-slice-uniqueness-image : equiv-slice (map-emb i) (map-emb i')
equiv-slice-uniqueness-image =
pr1 (center uniqueness-image)
hom-equiv-slice-uniqueness-image : hom-slice (map-emb i) (map-emb i')
hom-equiv-slice-uniqueness-image =
hom-equiv-slice (map-emb i) (map-emb i') (equiv-slice-uniqueness-image)
map-hom-equiv-slice-uniqueness-image : B → B'
map-hom-equiv-slice-uniqueness-image =
map-hom-slice (map-emb i) (map-emb i') (hom-equiv-slice-uniqueness-image)
abstract
is-equiv-map-hom-equiv-slice-uniqueness-image :
is-equiv map-hom-equiv-slice-uniqueness-image
is-equiv-map-hom-equiv-slice-uniqueness-image =
is-equiv-map-equiv (pr1 equiv-slice-uniqueness-image)
equiv-equiv-slice-uniqueness-image : B ≃ B'
pr1 equiv-equiv-slice-uniqueness-image = map-hom-equiv-slice-uniqueness-image
pr2 equiv-equiv-slice-uniqueness-image =
is-equiv-map-hom-equiv-slice-uniqueness-image
triangle-hom-equiv-slice-uniqueness-image :
(map-emb i) ~ (map-emb i' ∘ map-hom-equiv-slice-uniqueness-image)
triangle-hom-equiv-slice-uniqueness-image =
triangle-hom-slice
( map-emb i)
( map-emb i')
( hom-equiv-slice-uniqueness-image)
htpy-equiv-slice-uniqueness-image :
htpy-hom-slice f
( map-emb i')
( comp-hom-slice f
( map-emb i)
( map-emb i')
( hom-equiv-slice-uniqueness-image)
( q))
( q')
htpy-equiv-slice-uniqueness-image =
pr2 (center uniqueness-image)
htpy-map-hom-equiv-slice-uniqueness-image :
( map-hom-equiv-slice-uniqueness-image ∘ map-hom-slice f (map-emb i) q) ~
( map-hom-slice f (map-emb i') q')
htpy-map-hom-equiv-slice-uniqueness-image =
pr1 htpy-equiv-slice-uniqueness-image
tetrahedron-hom-equiv-slice-uniqueness-image :
( ( ( triangle-hom-slice f (map-emb i) q) ∙h
( ( triangle-hom-equiv-slice-uniqueness-image) ·r
( map-hom-slice f (map-emb i) q))) ∙h
( map-emb i' ·l htpy-map-hom-equiv-slice-uniqueness-image)) ~
( triangle-hom-slice f (map-emb i') q')
tetrahedron-hom-equiv-slice-uniqueness-image =
pr2 htpy-equiv-slice-uniqueness-image
```
### Uniqueness of the image
```agda
module _
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X)
{B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i))
(H : is-image f i q)
where
abstract
uniqueness-im :
is-contr
( Σ ( equiv-slice (inclusion-im f) (map-emb i))
( λ e →
htpy-hom-slice f
( map-emb i)
( comp-hom-slice f
( inclusion-im f)
( map-emb i)
( hom-equiv-slice (inclusion-im f) (map-emb i) e)
( unit-im f))
( q)))
uniqueness-im =
uniqueness-image f (emb-im f) (unit-im f) (is-image-im f) i q H
equiv-slice-uniqueness-im : equiv-slice (inclusion-im f) (map-emb i)
equiv-slice-uniqueness-im =
pr1 (center uniqueness-im)
hom-equiv-slice-uniqueness-im : hom-slice (inclusion-im f) (map-emb i)
hom-equiv-slice-uniqueness-im =
hom-equiv-slice (inclusion-im f) (map-emb i) equiv-slice-uniqueness-im
map-hom-equiv-slice-uniqueness-im : im f → B
map-hom-equiv-slice-uniqueness-im =
map-hom-slice (inclusion-im f) (map-emb i) hom-equiv-slice-uniqueness-im
abstract
is-equiv-map-hom-equiv-slice-uniqueness-im :
is-equiv map-hom-equiv-slice-uniqueness-im
is-equiv-map-hom-equiv-slice-uniqueness-im =
is-equiv-map-equiv (pr1 equiv-slice-uniqueness-im)
equiv-equiv-slice-uniqueness-im : im f ≃ B
pr1 equiv-equiv-slice-uniqueness-im = map-hom-equiv-slice-uniqueness-im
pr2 equiv-equiv-slice-uniqueness-im =
is-equiv-map-hom-equiv-slice-uniqueness-im
triangle-hom-equiv-slice-uniqueness-im :
(inclusion-im f) ~ (map-emb i ∘ map-hom-equiv-slice-uniqueness-im)
triangle-hom-equiv-slice-uniqueness-im =
triangle-hom-slice
( inclusion-im f)
( map-emb i)
( hom-equiv-slice-uniqueness-im)
htpy-equiv-slice-uniqueness-im :
htpy-hom-slice f
( map-emb i)
( comp-hom-slice f
( inclusion-im f)
( map-emb i)
( hom-equiv-slice-uniqueness-im)
( unit-im f))
( q)
htpy-equiv-slice-uniqueness-im =
pr2 (center uniqueness-im)
htpy-map-hom-equiv-slice-uniqueness-im :
( ( map-hom-equiv-slice-uniqueness-im) ∘
( map-hom-slice f (inclusion-im f) (unit-im f))) ~
( map-hom-slice f (map-emb i) q)
htpy-map-hom-equiv-slice-uniqueness-im =
pr1 htpy-equiv-slice-uniqueness-im
tetrahedron-hom-equiv-slice-uniqueness-im :
( ( ( triangle-hom-slice f (inclusion-im f) (unit-im f)) ∙h
( ( triangle-hom-equiv-slice-uniqueness-im) ·r
( map-hom-slice f (inclusion-im f) (unit-im f)))) ∙h
( map-emb i ·l htpy-map-hom-equiv-slice-uniqueness-im)) ~
( triangle-hom-slice f (map-emb i) q)
tetrahedron-hom-equiv-slice-uniqueness-im =
pr2 htpy-equiv-slice-uniqueness-im
```