# The universal property of coproduct types
```agda
module foundation.universal-property-coproduct-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.function-extensionality
open import foundation.universal-property-equivalences
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.coproduct-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.precomposition-functions
```
</details>
## Idea
The universal property and dependent universal property of coproduct types
characterize maps and dependent functions out of coproduct types.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
ev-inl-inr :
{l3 : Level} (P : A + B → UU l3) →
((t : A + B) → P t) → ((x : A) → P (inl x)) × ((y : B) → P (inr y))
pr1 (ev-inl-inr P s) x = s (inl x)
pr2 (ev-inl-inr P s) y = s (inr y)
dependent-universal-property-coproduct :
{l3 : Level} (P : A + B → UU l3) → is-equiv (ev-inl-inr P)
dependent-universal-property-coproduct P =
is-equiv-is-invertible
( λ p → ind-coproduct P (pr1 p) (pr2 p))
( ind-Σ (λ f g → eq-pair refl refl))
( λ s → eq-htpy (ind-coproduct _ refl-htpy refl-htpy))
equiv-dependent-universal-property-coproduct :
{l3 : Level} (P : A + B → UU l3) →
((x : A + B) → P x) ≃ (((a : A) → P (inl a)) × ((b : B) → P (inr b)))
pr1 (equiv-dependent-universal-property-coproduct P) = ev-inl-inr P
pr2 (equiv-dependent-universal-property-coproduct P) =
dependent-universal-property-coproduct P
abstract
universal-property-coproduct :
{l3 : Level} (X : UU l3) → is-equiv (ev-inl-inr (λ _ → X))
universal-property-coproduct X =
dependent-universal-property-coproduct (λ _ → X)
equiv-universal-property-coproduct :
{l3 : Level} (X : UU l3) → (A + B → X) ≃ ((A → X) × (B → X))
equiv-universal-property-coproduct X =
equiv-dependent-universal-property-coproduct (λ _ → X)
abstract
uniqueness-coproduct :
{l3 : Level} {Y : UU l3} (i : A → Y) (j : B → Y) →
( {l : Level} (X : UU l) →
is-equiv (λ (s : Y → X) → pair' (s ∘ i) (s ∘ j))) →
is-equiv (rec-coproduct i j)
uniqueness-coproduct i j H =
is-equiv-is-equiv-precomp
( rec-coproduct i j)
( λ X →
is-equiv-right-factor
( ev-inl-inr (λ _ → X))
( precomp (rec-coproduct i j) X)
( universal-property-coproduct X)
( H X))
abstract
universal-property-coproduct-is-equiv-rec-coproduct :
{l3 : Level} (X : UU l3) (i : A → X) (j : B → X) →
is-equiv (rec-coproduct i j) →
(l4 : Level) (Y : UU l4) →
is-equiv (λ (s : X → Y) → pair' (s ∘ i) (s ∘ j))
universal-property-coproduct-is-equiv-rec-coproduct X i j H l Y =
is-equiv-comp
( ev-inl-inr (λ _ → Y))
( precomp (rec-coproduct i j) Y)
( is-equiv-precomp-is-equiv
( rec-coproduct i j)
( H)
( Y))
( universal-property-coproduct Y)
```