# Weakly constant maps
```agda
module foundation.weakly-constant-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.fixed-points-endofunctions
open import foundation.identity-types
open import foundation.iterated-dependent-product-types
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.propositions
open import foundation-core.sets
open import foundation-core.torsorial-type-families
```
</details>
## Idea
A map `f : A → B` is said to be
{{#concept "weakly constant" Disambiguation="map of types" Agda=is-weakly-constant}}
if any two elements in `A` are mapped to
[identical elements](foundation-core.identity-types.md) in `B`.
## Definitions
### The structure on a map of being weakly constant
```agda
is-weakly-constant :
{l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2)
is-weakly-constant {A = A} f = (x y : A) → f x = f y
```
### The type of weakly constant maps
```agda
weakly-constant-map : {l1 l2 : Level} (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2)
weakly-constant-map A B = Σ (A → B) (is-weakly-constant)
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : weakly-constant-map A B)
where
map-weakly-constant-map : A → B
map-weakly-constant-map = pr1 f
is-weakly-constant-weakly-constant-map :
is-weakly-constant map-weakly-constant-map
is-weakly-constant-weakly-constant-map = pr2 f
```
## Properties
### Being weakly constant is a property if the codomain is a set
```agda
module _
{l1 l2 : Level} {A : UU l1} (B : Set l2) (f : A → type-Set B)
where
abstract
is-prop-is-weakly-constant-Set : is-prop (is-weakly-constant f)
is-prop-is-weakly-constant-Set =
is-prop-iterated-Π 2 (λ x y → is-set-type-Set B (f x) (f y))
is-weakly-constant-prop-Set : Prop (l1 ⊔ l2)
pr1 is-weakly-constant-prop-Set = is-weakly-constant f
pr2 is-weakly-constant-prop-Set = is-prop-is-weakly-constant-Set
```
### The action on identifications of a weakly constant map is weakly constant
This is Auxiliary Lemma 4.3 of {{#cite KECA17}}.
```agda
module _
{l1 l2 : Level} {X : UU l1} {Y : UU l2} {f : X → Y}
(W : is-weakly-constant f)
where
compute-ap-is-weakly-constant :
{x y : X} (p : x = y) → inv (W x x) ∙ W x y = ap f p
compute-ap-is-weakly-constant {x} refl = left-inv (W x x)
is-weakly-constant-ap : {x y : X} → is-weakly-constant (ap f {x} {y})
is-weakly-constant-ap {x} {y} p q =
( inv (compute-ap-is-weakly-constant p)) ∙
( compute-ap-is-weakly-constant q)
module _
{l1 l2 : Level} {X : UU l1} {Y : UU l2}
(f : weakly-constant-map X Y)
where
ap-weakly-constant-map :
{x y : X} →
weakly-constant-map
( x = y)
( map-weakly-constant-map f x = map-weakly-constant-map f y)
ap-weakly-constant-map {x} {y} =
( ap (map-weakly-constant-map f) {x} {y} ,
is-weakly-constant-ap (is-weakly-constant-weakly-constant-map f))
```
### The type of fixed points of a weakly constant endomap is a proposition
This is Lemma 4.1 of {{#cite KECA17}}. We follow the second proof, due to
Christian Sattler.
```agda
module _
{l : Level} {A : UU l} {f : A → A} (W : is-weakly-constant f)
where
is-proof-irrelevant-fixed-point-is-weakly-constant :
is-proof-irrelevant (fixed-point f)
is-proof-irrelevant-fixed-point-is-weakly-constant (x , p) =
is-contr-equiv
( Σ A (λ z → f x = z))
( equiv-tot (λ z → equiv-concat (W x z) z))
( is-torsorial-Id (f x))
is-prop-fixed-point-is-weakly-constant : is-prop (fixed-point f)
is-prop-fixed-point-is-weakly-constant =
is-prop-is-proof-irrelevant
( is-proof-irrelevant-fixed-point-is-weakly-constant)
```
## References
{{#bibliography}} {{#reference KECA17}}