# Whiskering homotopies with respect to concatenation
```agda
module foundation.whiskering-homotopies-concatenation where
open import foundation-core.whiskering-homotopies-concatenation public
```
<details><summary>Imports</summary>
```agda
open import foundation.universe-levels
open import foundation.whiskering-identifications-concatenation
open import foundation-core.equivalences
open import foundation-core.functoriality-dependent-function-types
open import foundation-core.homotopies
```
</details>
## Idea
Consider a homotopy `H : f ~ g` and a homotopy `K : I ~ J` between two
homotopies `I J : g ~ f`. The
{{#concept "left whiskering" Disambiguation="homotopies with respect to concatenation" Agda=left-whisker-concat-htpy}}
of `H` and `K` is a homotopy `H ∙h I ~ H ∙h J`. In other words, left whiskering
of homotopies with respect to concatenation is a
[whiskering operation](foundation.whiskering-operations.md)
```text
(H : f ~ g) {I J : g ~ h} → I ~ J → H ∙h I ~ H ∙h K.
```
Similarly, we introduce
{{#concept "right whiskering" Disambiguation="homotopies with respect to concatenation" Agda=right-whisker-concat-htpy}}
to be an operation
```text
{H I : f ~ g} → H ~ I → (J : g ~ h) → H ∙h J ~ I ∙h J.
```
## Properties
### Left whiskering of homotopies with respect to concatenation is an equivalence
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
is-equiv-left-whisker-concat-htpy :
{f g h : (x : A) → B x} (H : f ~ g) {I J : g ~ h} →
is-equiv (left-whisker-concat-htpy H {I} {J})
is-equiv-left-whisker-concat-htpy H =
is-equiv-map-Π-is-fiberwise-equiv
( λ x → is-equiv-left-whisker-concat (H x))
```
### Right whiskering of homotopies with respect to concatenation is an equivalence
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
is-equiv-right-whisker-concat-htpy :
{f g h : (x : A) → B x} {H I : f ~ g} (J : g ~ h) →
is-equiv (λ (K : H ~ I) → right-whisker-concat-htpy K J)
is-equiv-right-whisker-concat-htpy J =
is-equiv-map-Π-is-fiberwise-equiv
( λ x → is-equiv-right-whisker-concat (J x))
```