# Dependent products large preorders
```agda
module order-theory.dependent-products-large-preorders where
```
<details><summary>Imports</summary>
```agda
open import foundation.large-binary-relations
open import foundation.propositions
open import foundation.universe-levels
open import order-theory.large-preorders
```
</details>
## Idea
Given a family `P : I → Large-Preorder α β` of large preorders indexed by a type
`I : UU l`, the dependent prodcut of the large preorders `P i` is again a large
preorder.
## Definition
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
{l : Level} {I : UU l} (P : I → Large-Preorder α β)
where
type-Π-Large-Preorder : (l1 : Level) → UU (α l1 ⊔ l)
type-Π-Large-Preorder l1 = (i : I) → type-Large-Preorder (P i) l1
leq-prop-Π-Large-Preorder :
Large-Relation-Prop
( λ l1 l2 → β l1 l2 ⊔ l)
( type-Π-Large-Preorder)
leq-prop-Π-Large-Preorder x y =
Π-Prop I (λ i → leq-prop-Large-Preorder (P i) (x i) (y i))
leq-Π-Large-Preorder :
Large-Relation
( λ l1 l2 → β l1 l2 ⊔ l)
( type-Π-Large-Preorder)
leq-Π-Large-Preorder x y =
type-Prop (leq-prop-Π-Large-Preorder x y)
is-prop-leq-Π-Large-Preorder :
is-prop-Large-Relation type-Π-Large-Preorder leq-Π-Large-Preorder
is-prop-leq-Π-Large-Preorder x y =
is-prop-type-Prop (leq-prop-Π-Large-Preorder x y)
refl-leq-Π-Large-Preorder :
is-reflexive-Large-Relation type-Π-Large-Preorder leq-Π-Large-Preorder
refl-leq-Π-Large-Preorder x i = refl-leq-Large-Preorder (P i) (x i)
transitive-leq-Π-Large-Preorder :
is-transitive-Large-Relation type-Π-Large-Preorder leq-Π-Large-Preorder
transitive-leq-Π-Large-Preorder x y z H K i =
transitive-leq-Large-Preorder (P i) (x i) (y i) (z i) (H i) (K i)
Π-Large-Preorder : Large-Preorder (λ l1 → α l1 ⊔ l) (λ l1 l2 → β l1 l2 ⊔ l)
type-Large-Preorder Π-Large-Preorder =
type-Π-Large-Preorder
leq-prop-Large-Preorder Π-Large-Preorder =
leq-prop-Π-Large-Preorder
refl-leq-Large-Preorder Π-Large-Preorder =
refl-leq-Π-Large-Preorder
transitive-leq-Large-Preorder Π-Large-Preorder =
transitive-leq-Π-Large-Preorder
```