# Lower bounds in posets
```agda
module order-theory.lower-bounds-posets where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.universe-levels
open import order-theory.posets
```
</details>
## Idea
A **lower bound** of two elements `a` and `b` in a poset `P` is an element `x`
such that both `x ≤ a` and `x ≤ b` hold. Similarly, a **lower bound** of a
family `a : I → P` of elements in `P` is an element `x` such that `x ≤ a i`
holds for every `i : I`.
## Definitions
### Binary lower bounds
```agda
module _
{l1 l2 : Level} (P : Poset l1 l2) (a b x : type-Poset P)
where
is-binary-lower-bound-Poset-Prop : Prop l2
is-binary-lower-bound-Poset-Prop =
product-Prop (leq-Poset-Prop P x a) (leq-Poset-Prop P x b)
is-binary-lower-bound-Poset : UU l2
is-binary-lower-bound-Poset =
type-Prop is-binary-lower-bound-Poset-Prop
is-prop-is-binary-lower-bound-Poset : is-prop is-binary-lower-bound-Poset
is-prop-is-binary-lower-bound-Poset =
is-prop-type-Prop is-binary-lower-bound-Poset-Prop
module _
{l1 l2 : Level} (P : Poset l1 l2) {a b x : type-Poset P}
(H : is-binary-lower-bound-Poset P a b x)
where
leq-left-is-binary-lower-bound-Poset : leq-Poset P x a
leq-left-is-binary-lower-bound-Poset = pr1 H
leq-right-is-binary-lower-bound-Poset : leq-Poset P x b
leq-right-is-binary-lower-bound-Poset = pr2 H
```
### Lower bounds of families of elements
```agda
module _
{l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} (x : I → type-Poset P)
where
is-lower-bound-family-of-elements-Poset-Prop : type-Poset P → Prop (l2 ⊔ l3)
is-lower-bound-family-of-elements-Poset-Prop z =
Π-Prop I (λ i → leq-Poset-Prop P z (x i))
is-lower-bound-family-of-elements-Poset : type-Poset P → UU (l2 ⊔ l3)
is-lower-bound-family-of-elements-Poset z =
type-Prop (is-lower-bound-family-of-elements-Poset-Prop z)
is-prop-is-lower-bound-family-of-elements-Poset :
(z : type-Poset P) → is-prop (is-lower-bound-family-of-elements-Poset z)
is-prop-is-lower-bound-family-of-elements-Poset z =
is-prop-type-Prop (is-lower-bound-family-of-elements-Poset-Prop z)
```
## Properties
### Any element less than a lower bound of `a` and `b` is a lower bound of `a` and `b`
```agda
module _
{l1 l2 : Level} (P : Poset l1 l2) {a b x : type-Poset P}
(H : is-binary-lower-bound-Poset P a b x)
where
is-binary-lower-bound-leq-Poset :
{y : type-Poset P} →
leq-Poset P y x → is-binary-lower-bound-Poset P a b y
pr1 (is-binary-lower-bound-leq-Poset K) =
transitive-leq-Poset P _ x a
( leq-left-is-binary-lower-bound-Poset P H)
( K)
pr2 (is-binary-lower-bound-leq-Poset K) =
transitive-leq-Poset P _ x b
( leq-right-is-binary-lower-bound-Poset P H)
( K)
```
### Any element less than a lower bound of a family of elements `a` is a lower bound of `a`
```agda
module _
{l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} {a : I → type-Poset P}
{x : type-Poset P} (H : is-lower-bound-family-of-elements-Poset P a x)
where
is-lower-bound-family-of-elements-leq-Poset :
{y : type-Poset P} → leq-Poset P y x →
is-lower-bound-family-of-elements-Poset P a y
is-lower-bound-family-of-elements-leq-Poset K i =
transitive-leq-Poset P _ x (a i) (H i) K
```