# Similarity of elements in large preorders
```agda
module order-theory.similarity-of-elements-large-preorders where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.large-binary-relations
open import foundation.propositions
open import foundation.universe-levels
open import order-theory.large-preorders
```
</details>
## Idea
Two elements `x` and `y` of a [large preorder](order-theory.large-preorders.md)
`P` are said to be **similar** if both `x ≤ y` and `y ≤ x` hold.
In informal writing we will use the notation `x ≈ y` to assert that `x` and `y`
are similar elements in a preorder `P`.
## Definition
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β)
where
sim-prop-Large-Preorder :
{l1 l2 : Level}
(x : type-Large-Preorder P l1) (y : type-Large-Preorder P l2) →
Prop (β l1 l2 ⊔ β l2 l1)
sim-prop-Large-Preorder x y =
product-Prop
( leq-prop-Large-Preorder P x y)
( leq-prop-Large-Preorder P y x)
sim-Large-Preorder :
{l1 l2 : Level}
(x : type-Large-Preorder P l1) (y : type-Large-Preorder P l2) →
UU (β l1 l2 ⊔ β l2 l1)
sim-Large-Preorder x y = type-Prop (sim-prop-Large-Preorder x y)
is-prop-sim-Large-Preorder :
{l1 l2 : Level}
(x : type-Large-Preorder P l1) (y : type-Large-Preorder P l2) →
is-prop (sim-Large-Preorder x y)
is-prop-sim-Large-Preorder x y =
is-prop-type-Prop (sim-prop-Large-Preorder x y)
```
## Properties
### The similarity relation is reflexive
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β)
where
refl-sim-Large-Preorder :
is-reflexive-Large-Relation (type-Large-Preorder P) (sim-Large-Preorder P)
pr1 (refl-sim-Large-Preorder x) = refl-leq-Large-Preorder P x
pr2 (refl-sim-Large-Preorder x) = refl-leq-Large-Preorder P x
```
### The similarity relation is transitive
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β)
where
transitive-sim-Large-Preorder :
is-transitive-Large-Relation (type-Large-Preorder P) (sim-Large-Preorder P)
pr1 (transitive-sim-Large-Preorder x y z H K) =
transitive-leq-Large-Preorder P x y z (pr1 H) (pr1 K)
pr2 (transitive-sim-Large-Preorder x y z H K) =
transitive-leq-Large-Preorder P z y x (pr2 K) (pr2 H)
```
### The similarity relation is symmetric
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β)
where
symmetric-sim-Large-Preorder :
is-symmetric-Large-Relation (type-Large-Preorder P) (sim-Large-Preorder P)
pr1 (symmetric-sim-Large-Preorder _ _ H) = pr2 H
pr2 (symmetric-sim-Large-Preorder _ _ H) = pr1 H
```
### Equal elements are similar
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Preorder α β)
where
sim-eq-Large-Preorder :
{l : Level} {x y : type-Large-Preorder P l} →
x = y → sim-Large-Preorder P x y
sim-eq-Large-Preorder refl = refl-sim-Large-Preorder P _
```