# Similarity of order preserving maps between large posets
```agda
module order-theory.similarity-of-order-preserving-maps-large-posets where
```
<details><summary>Imports</summary>
```agda
open import foundation.cartesian-product-types
open import foundation.universe-levels
open import order-theory.large-posets
open import order-theory.order-preserving-maps-large-posets
open import order-theory.similarity-of-elements-large-posets
open import order-theory.similarity-of-order-preserving-maps-large-preorders
```
</details>
## Idea
Consider two
[order preserving maps](order-theory.order-preserving-maps-large-posets.md)
`f : hom-Large-Poset γf P Q` and `g : hom-Large-Poset γg P Q` between the same
two [large posets](order-theory.large-posets.md) `P` and `Q`, but each specified
with their own universe level reindexing functions. We say that `f` and `g` are
**similar** if the values `f x` and `g x` are
[similar](order-theory.similarity-of-elements-large-posets.md) for each `x : P`.
In other words, a **similarity of order preserving maps** between `f` and `g`
consists of an assignment `x ↦ h x` where
```text
h x : f x ≈ g x
```
for each `x : type-Large-Poset P`. In informal writing we will use the notation
`f ≈ g` to assert that the order preserving map `f` is similar to the order
preserving map `g`.
## Definitions
### Similarity of order preserving maps between large posets
```agda
module _
{αP αQ γf γg : Level → Level} {βP βQ : Level → Level → Level}
(P : Large-Poset αP βP)
(Q : Large-Poset αQ βQ)
(f : hom-Large-Poset γf P Q)
(g : hom-Large-Poset γg P Q)
where
sim-hom-Large-Poset : UUω
sim-hom-Large-Poset =
sim-hom-Large-Preorder
( large-preorder-Large-Poset P)
( large-preorder-Large-Poset Q)
( f)
( g)
```
### The reflexive similarity of order preserving maps between large posets
```agda
module _
{αP αQ γf : Level → Level} {βP βQ : Level → Level → Level}
(P : Large-Poset αP βP)
(Q : Large-Poset αQ βQ)
(f : hom-Large-Poset γf P Q)
where
refl-sim-hom-Large-Poset : sim-hom-Large-Poset P Q f f
refl-sim-hom-Large-Poset =
refl-sim-hom-Large-Preorder
( large-preorder-Large-Poset P)
( large-preorder-Large-Poset Q)
( f)
```
## Properties
### Order preserving maps with the same universe level reindexing function are homotopic if and only if they are similar
```agda
module _
{αP αQ γ : Level → Level} {βP βQ : Level → Level → Level}
(P : Large-Poset αP βP)
(Q : Large-Poset αQ βQ)
(f : hom-Large-Poset γ P Q)
(g : hom-Large-Poset γ P Q)
where
sim-htpy-hom-Large-Poset :
htpy-hom-Large-Poset P Q f g → sim-hom-Large-Poset P Q f g
sim-htpy-hom-Large-Poset =
sim-htpy-hom-Large-Preorder
( large-preorder-Large-Poset P)
( large-preorder-Large-Poset Q)
( f)
( g)
htpy-sim-hom-Large-Poset :
sim-hom-Large-Poset P Q f g → htpy-hom-Large-Poset P Q f g
htpy-sim-hom-Large-Poset H x =
eq-sim-Large-Poset Q
( map-hom-Large-Poset P Q f x)
( map-hom-Large-Poset P Q g x)
( H x)
```