# Top elements in large posets
```agda
module order-theory.top-elements-large-posets where
```
<details><summary>Imports</summary>
```agda
open import foundation.universe-levels
open import order-theory.dependent-products-large-posets
open import order-theory.large-posets
```
</details>
## Idea
We say that a [large poset](order-theory.large-posets.md) `P` has a **largest
element** if it comes equipped with an element `t : type-Large-Poset P lzero`
such that `x ≤ t` holds for every `x : P`
## Definition
### The predicate on elements of posets of being a top element
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β)
where
is-top-element-Large-Poset :
{l1 : Level} → type-Large-Poset P l1 → UUω
is-top-element-Large-Poset x =
{l : Level} (y : type-Large-Poset P l) → leq-Large-Poset P y x
```
### The predicate on posets of having a top element
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(P : Large-Poset α β)
where
record
has-top-element-Large-Poset : UUω
where
field
top-has-top-element-Large-Poset :
type-Large-Poset P lzero
is-top-element-top-has-top-element-Large-Poset :
is-top-element-Large-Poset P top-has-top-element-Large-Poset
open has-top-element-Large-Poset public
```
## Properties
### If `P` is a family of large posets, then `Π-Large-Poset P` has a largest element
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
{l1 : Level} {I : UU l1} (P : I → Large-Poset α β)
where
has-top-element-Π-Large-Poset :
((i : I) → has-top-element-Large-Poset (P i)) →
has-top-element-Large-Poset (Π-Large-Poset P)
top-has-top-element-Large-Poset
( has-top-element-Π-Large-Poset H) i =
top-has-top-element-Large-Poset (H i)
is-top-element-top-has-top-element-Large-Poset
( has-top-element-Π-Large-Poset H) x i =
is-top-element-top-has-top-element-Large-Poset (H i) (x i)
```