# The universal property of pointed equivalences
```agda
module structured-types.universal-property-pointed-equivalences where
```
<details><summary>Imports</summary>
```agda
open import foundation.equivalences
open import foundation.universe-levels
open import structured-types.pointed-maps
open import structured-types.pointed-types
open import structured-types.precomposition-pointed-maps
```
</details>
## Idea
Analogous to the
[universal property of equivalences](foundation.universal-property-equivalences.md),
the
{{#concept "universal property of pointed equivalences" Agda=universal-property-pointed-equiv}}
asserts about a [pointed map](structured-types.pointed-maps.md) `f : A →∗ B`
that the
[precomposition function](structured-types.precomposition-pointed-maps.md)
```text
- ∘∗ f : (B →∗ C) → (A →∗ C)
```
is an [equivalence](foundation.equivalences.md) for every
[pointed type](structured-types.pointed-types.md) `C`.
## Definitions
### The universal property of pointed equivalences
```agda
module _
{l1 l2 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} (f : A →∗ B)
where
universal-property-pointed-equiv : UUω
universal-property-pointed-equiv =
{l : Level} (C : Pointed-Type l) → is-equiv (precomp-pointed-map f C)
```