# Dependent universal property of suspensions
```agda
module synthetic-homotopy-theory.dependent-universal-property-suspensions where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-dependent-functions
open import foundation.constant-maps
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.unit-type
open import foundation.universe-levels
open import synthetic-homotopy-theory.dependent-cocones-under-spans
open import synthetic-homotopy-theory.dependent-suspension-structures
open import synthetic-homotopy-theory.suspension-structures
```
</details>
## Idea
This is the dependent analog of the
[universal property of suspensions](synthetic-homotopy-theory.universal-property-suspensions.md).
## Definition
### The dependent universal property of suspensions
```agda
dependent-ev-suspension :
{l1 l2 l3 : Level} {X : UU l1} {Y : UU l2}
(s : suspension-structure X Y) (B : Y → UU l3) →
((y : Y) → B y) →
dependent-suspension-structure B s
pr1 (dependent-ev-suspension s B f) =
f (north-suspension-structure s)
pr1 (pr2 (dependent-ev-suspension s B f)) =
f (south-suspension-structure s)
pr2 (pr2 (dependent-ev-suspension s B f)) =
apd f ∘ meridian-suspension-structure s
module _
{l1 l2 : Level} {X : UU l1} {Y : UU l2}
(s : suspension-structure X Y)
where
dependent-universal-property-suspension : UUω
dependent-universal-property-suspension =
{l : Level} (B : Y → UU l) → is-equiv (dependent-ev-suspension s B)
```
#### Coherence between `dependent-ev-suspension` and `dependent-cocone-map`
```agda
module _
{l1 l2 l3 : Level} {X : UU l1} {Y : UU l2}
where
triangle-dependent-ev-suspension :
(s : suspension-structure X Y) →
(B : Y → UU l3) →
( ( map-equiv
( equiv-dependent-suspension-structure-suspension-cocone s B)) ∘
( dependent-cocone-map
( terminal-map X)
( terminal-map X)
( suspension-cocone-suspension-structure s)
( B))) ~
( dependent-ev-suspension s B)
triangle-dependent-ev-suspension s B = refl-htpy
```