# An involution on the standard finite types
```agda
module univalent-combinatorics.involution-standard-finite-types where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.modular-arithmetic-standard-finite-types
open import elementary-number-theory.natural-numbers
open import foundation.action-on-identifications-functions
open import foundation.identity-types
open import foundation.involutions
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
Every standard finite type `Fin k` has an involution operation given by
`x ↦ -x - 1`, using the group operations on `Fin k`.
## Definition
```agda
opposite-Fin : (k : ℕ) → Fin k → Fin k
opposite-Fin k x = pred-Fin k (neg-Fin k x)
```
## Properties
### The opposite function on `Fin k` is an involution
```agda
is-involution-opposite-Fin : (k : ℕ) → is-involution (opposite-Fin k)
is-involution-opposite-Fin k x =
( ap (pred-Fin k) (neg-pred-Fin k (neg-Fin k x))) ∙
( ( is-retraction-pred-Fin k (neg-Fin k (neg-Fin k x))) ∙
( neg-neg-Fin k x))
```