# Noncoherent large wild higher precategories
```agda
{-# OPTIONS --guardedness #-}
module wild-category-theory.noncoherent-large-wild-higher-precategories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.precategories
open import foundation.action-on-identifications-binary-functions
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.universe-levels
open import structured-types.globular-types
open import structured-types.large-globular-types
open import structured-types.large-reflexive-globular-types
open import structured-types.large-transitive-globular-types
open import wild-category-theory.noncoherent-wild-higher-precategories
```
</details>
## Idea
It is an important open problem known as the _coherence problem_ to define a
fully coherent notion of $ā$-category in univalent type theory. The subject of
_wild category theory_ attempts to recover some of the benefits of $ā$-category
theory without tackling this problem. We introduce, as one of our basic building
blocks in this subject, the notion of a _large noncoherent wild higher
precategory_.
A _large noncoherent wild higher precategory_ `š` is a structure that attempts
at capturing the structure of a large higher precategory to the $0$'th order. It
consists of in some sense all of the operations and none of the coherence of a
large higher precategory. Thus, it is defined as a
[large globular type](structured-types.large-globular-types.md) with families of
$n$-morphisms labeled as "identities"
```text
id-hom : (x : š-Cell š) ā (š+1)-Cell š x x
```
and a composition operation at every dimension
```text
comp-hom :
{x y z : š-Cell š} ā (š+1)-Cell š y z ā (š+1)-Cell š x y ā (š+1)-Cell š x z.
```
Entirely concretely, we define a
{{#concept "noncoherent large wild higher precategory" Agda=Noncoherent-Large-Wild-Higher-Precategory}}
to be a [reflexive](structured-types.reflexive-globular-types.md) and
[transitive](structured-types.transitive-globular-types.md) large globular type.
We call the 0-cells the _objects_, the 1-cells the _morphisms_ and the higher
cells the _$n$-morphisms_. The reflexivities are called the _identity
morphisms_, and the transitivity operations are branded as _composition of
morphisms_.
## Definitions
### Noncoherent large wild higher precategories
```agda
record
Noncoherent-Large-Wild-Higher-Precategory
(α : Level ā Level) (β : Level ā Level ā Level) : UUĻ
where
field
obj-Noncoherent-Large-Wild-Higher-Precategory : (l : Level) ā UU (α l)
hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory :
large-globular-structure β obj-Noncoherent-Large-Wild-Higher-Precategory
id-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory :
is-reflexive-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
comp-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory :
is-transitive-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
large-globular-type-Noncoherent-Large-Wild-Higher-Precategory :
Large-Globular-Type α β
large-globular-type-Noncoherent-Large-Wild-Higher-Precategory =
Ī» where
.0-cell-Large-Globular-Type ā
obj-Noncoherent-Large-Wild-Higher-Precategory
.globular-structure-0-cell-Large-Globular-Type ā
hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory
```
We record some common projections for noncoherent large wild higher
precategories.
```agda
hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level} ā
obj-Noncoherent-Large-Wild-Higher-Precategory l1 ā
obj-Noncoherent-Large-Wild-Higher-Precategory l2 ā
UU (β l1 l2)
hom-Noncoherent-Large-Wild-Higher-Precategory =
1-cell-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
id-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l : Level} {x : obj-Noncoherent-Large-Wild-Higher-Precategory l} ā
hom-Noncoherent-Large-Wild-Higher-Precategory x x
id-hom-Noncoherent-Large-Wild-Higher-Precategory =
refl-1-cell-is-reflexive-large-globular-structure
( id-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
comp-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 l3 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2}
{z : obj-Noncoherent-Large-Wild-Higher-Precategory l3} ā
hom-Noncoherent-Large-Wild-Higher-Precategory y z ā
hom-Noncoherent-Large-Wild-Higher-Precategory x y ā
hom-Noncoherent-Large-Wild-Higher-Precategory x z
comp-hom-Noncoherent-Large-Wild-Higher-Precategory =
comp-1-cell-is-transitive-large-globular-structure
( comp-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
(x : obj-Noncoherent-Large-Wild-Higher-Precategory l1)
(y : obj-Noncoherent-Large-Wild-Higher-Precategory l2) ā
Globular-Type (β l1 l2) (β l1 l2)
pr1 (hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory x y) =
hom-Noncoherent-Large-Wild-Higher-Precategory x y
pr2 (hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory x y) =
globular-structure-1-cell-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
( x)
( y)
hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
(x : obj-Noncoherent-Large-Wild-Higher-Precategory l1)
(y : obj-Noncoherent-Large-Wild-Higher-Precategory l2) ā
Noncoherent-Wild-Higher-Precategory (β l1 l2) (β l1 l2)
hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory
x y =
make-Noncoherent-Wild-Higher-Precategory
( hom-Noncoherent-Large-Wild-Higher-Precategory x y)
( globular-structure-1-cell-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
( x)
( y))
( is-reflexive-globular-structure-1-cell-is-reflexive-large-globular-structure
( id-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
( x)
( y))
( is-transitive-globular-structure-1-cell-is-transitive-large-globular-structure
( comp-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
( x)
( y))
```
```agda
2-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2} ā
hom-Noncoherent-Large-Wild-Higher-Precategory x y ā
hom-Noncoherent-Large-Wild-Higher-Precategory x y ā
UU (β l1 l2)
2-hom-Noncoherent-Large-Wild-Higher-Precategory =
2-cell-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
id-2-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2}
{f : hom-Noncoherent-Large-Wild-Higher-Precategory x y} ā
2-hom-Noncoherent-Large-Wild-Higher-Precategory f f
id-2-hom-Noncoherent-Large-Wild-Higher-Precategory =
refl-2-cell-is-reflexive-large-globular-structure
( id-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
comp-2-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2}
{f g h : hom-Noncoherent-Large-Wild-Higher-Precategory x y} ā
2-hom-Noncoherent-Large-Wild-Higher-Precategory g h ā
2-hom-Noncoherent-Large-Wild-Higher-Precategory f g ā
2-hom-Noncoherent-Large-Wild-Higher-Precategory f h
comp-2-hom-Noncoherent-Large-Wild-Higher-Precategory =
comp-2-cell-is-transitive-large-globular-structure
( comp-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
```
```agda
3-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2}
{f g : hom-Noncoherent-Large-Wild-Higher-Precategory x y} ā
2-hom-Noncoherent-Large-Wild-Higher-Precategory f g ā
2-hom-Noncoherent-Large-Wild-Higher-Precategory f g ā
UU (β l1 l2)
3-hom-Noncoherent-Large-Wild-Higher-Precategory =
3-cell-large-globular-structure
( hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
id-3-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2}
{f g : hom-Noncoherent-Large-Wild-Higher-Precategory x y}
{H : 2-hom-Noncoherent-Large-Wild-Higher-Precategory f g} ā
3-hom-Noncoherent-Large-Wild-Higher-Precategory H H
id-3-hom-Noncoherent-Large-Wild-Higher-Precategory =
refl-3-cell-is-reflexive-large-globular-structure
( id-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
comp-3-hom-Noncoherent-Large-Wild-Higher-Precategory :
{l1 l2 : Level}
{x : obj-Noncoherent-Large-Wild-Higher-Precategory l1}
{y : obj-Noncoherent-Large-Wild-Higher-Precategory l2}
{f g : hom-Noncoherent-Large-Wild-Higher-Precategory x y}
{H K L : 2-hom-Noncoherent-Large-Wild-Higher-Precategory f g} ā
3-hom-Noncoherent-Large-Wild-Higher-Precategory K L ā
3-hom-Noncoherent-Large-Wild-Higher-Precategory H K ā
3-hom-Noncoherent-Large-Wild-Higher-Precategory H L
comp-3-hom-Noncoherent-Large-Wild-Higher-Precategory =
comp-3-cell-is-transitive-large-globular-structure
( comp-hom-globular-structure-Noncoherent-Large-Wild-Higher-Precategory)
```
```agda
open Noncoherent-Large-Wild-Higher-Precategory public
```