# Large function categories
```agda
module category-theory.large-function-categories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.dependent-products-of-large-categories
open import category-theory.isomorphisms-in-large-categories
open import category-theory.large-categories
open import foundation.equivalences
open import foundation.identity-types
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.universe-levels
```
</details>
## Idea
Given a type `I` and a [large category](category-theory.large-categories.md)
`C`, the {{#concept "large function category" Agda=Large-Function-Category}}
`Cᴵ` consists of `I`-indexed families of objects of `C` and `I`-indexed families
of morphisms between them.
## Definition
### Large function categories
```agda
module _
{l1 : Level} {α : Level → Level} {β : Level → Level → Level}
(I : UU l1) (C : Large-Category α β)
where
Large-Function-Category :
Large-Category (λ l2 → l1 ⊔ α l2) (λ l2 l3 → l1 ⊔ β l2 l3)
Large-Function-Category =
Π-Large-Category I (λ _ → C)
obj-Large-Function-Category : (l2 : Level) → UU (l1 ⊔ α l2)
obj-Large-Function-Category =
obj-Π-Large-Category I (λ _ → C)
hom-set-Large-Function-Category :
{l2 l3 : Level} →
obj-Large-Function-Category l2 → obj-Large-Function-Category l3 →
Set (l1 ⊔ β l2 l3)
hom-set-Large-Function-Category =
hom-set-Π-Large-Category I (λ _ → C)
hom-Large-Function-Category :
{l2 l3 : Level} →
obj-Large-Function-Category l2 → obj-Large-Function-Category l3 →
UU (l1 ⊔ β l2 l3)
hom-Large-Function-Category =
hom-Π-Large-Category I (λ _ → C)
comp-hom-Large-Function-Category :
{l2 l3 l4 : Level}
{x : obj-Large-Function-Category l2}
{y : obj-Large-Function-Category l3}
{z : obj-Large-Function-Category l4} →
hom-Large-Function-Category y z →
hom-Large-Function-Category x y →
hom-Large-Function-Category x z
comp-hom-Large-Function-Category =
comp-hom-Π-Large-Category I (λ _ → C)
associative-comp-hom-Large-Function-Category :
{l2 l3 l4 l5 : Level}
{x : obj-Large-Function-Category l2}
{y : obj-Large-Function-Category l3}
{z : obj-Large-Function-Category l4}
{w : obj-Large-Function-Category l5} →
(h : hom-Large-Function-Category z w)
(g : hom-Large-Function-Category y z)
(f : hom-Large-Function-Category x y) →
comp-hom-Large-Function-Category (comp-hom-Large-Function-Category h g) f =
comp-hom-Large-Function-Category h (comp-hom-Large-Function-Category g f)
associative-comp-hom-Large-Function-Category =
associative-comp-hom-Π-Large-Category I (λ _ → C)
involutive-eq-associative-comp-hom-Large-Function-Category :
{l2 l3 l4 l5 : Level}
{x : obj-Large-Function-Category l2}
{y : obj-Large-Function-Category l3}
{z : obj-Large-Function-Category l4}
{w : obj-Large-Function-Category l5} →
(h : hom-Large-Function-Category z w)
(g : hom-Large-Function-Category y z)
(f : hom-Large-Function-Category x y) →
comp-hom-Large-Function-Category
( comp-hom-Large-Function-Category h g)
( f) =ⁱ
comp-hom-Large-Function-Category
( h)
( comp-hom-Large-Function-Category g f)
involutive-eq-associative-comp-hom-Large-Function-Category =
involutive-eq-associative-comp-hom-Π-Large-Category I (λ _ → C)
id-hom-Large-Function-Category :
{l2 : Level} {x : obj-Large-Function-Category l2} →
hom-Large-Function-Category x x
id-hom-Large-Function-Category =
id-hom-Π-Large-Category I (λ _ → C)
left-unit-law-comp-hom-Large-Function-Category :
{l2 l3 : Level}
{x : obj-Large-Function-Category l2}
{y : obj-Large-Function-Category l3}
(f : hom-Large-Function-Category x y) →
comp-hom-Large-Function-Category id-hom-Large-Function-Category f = f
left-unit-law-comp-hom-Large-Function-Category =
left-unit-law-comp-hom-Π-Large-Category I (λ _ → C)
right-unit-law-comp-hom-Large-Function-Category :
{l2 l3 : Level}
{x : obj-Large-Function-Category l2}
{y : obj-Large-Function-Category l3}
(f : hom-Large-Function-Category x y) →
comp-hom-Large-Function-Category f id-hom-Large-Function-Category = f
right-unit-law-comp-hom-Large-Function-Category =
right-unit-law-comp-hom-Π-Large-Category I (λ _ → C)
```
## Properties
### Isomorphisms in the dependent product category are fiberwise isomorphisms
```agda
module _
{l1 l2 l3 : Level} {α : Level → Level} {β : Level → Level → Level}
(I : UU l1) (C : Large-Category α β)
{x : obj-Large-Function-Category I C l2}
{y : obj-Large-Function-Category I C l3}
where
is-fiberwise-iso-is-iso-Large-Function-Category :
(f : hom-Large-Function-Category I C x y) →
is-iso-Large-Category (Large-Function-Category I C) f →
(i : I) → is-iso-Large-Category C (f i)
is-fiberwise-iso-is-iso-Large-Function-Category =
is-fiberwise-iso-is-iso-Π-Large-Category I (λ _ → C)
fiberwise-iso-iso-Large-Function-Category :
iso-Large-Category (Large-Function-Category I C) x y →
(i : I) → iso-Large-Category C (x i) (y i)
fiberwise-iso-iso-Large-Function-Category =
fiberwise-iso-iso-Π-Large-Category I (λ _ → C)
is-iso-is-fiberwise-iso-Large-Function-Category :
(f : hom-Large-Function-Category I C x y) →
((i : I) → is-iso-Large-Category C (f i)) →
is-iso-Large-Category (Large-Function-Category I C) f
is-iso-is-fiberwise-iso-Large-Function-Category =
is-iso-is-fiberwise-iso-Π-Large-Category I (λ _ → C)
iso-fiberwise-iso-Large-Function-Category :
((i : I) → iso-Large-Category C (x i) (y i)) →
iso-Large-Category (Large-Function-Category I C) x y
iso-fiberwise-iso-Large-Function-Category =
iso-fiberwise-iso-Π-Large-Category I (λ _ → C)
is-equiv-is-fiberwise-iso-is-iso-Large-Function-Category :
(f : hom-Large-Function-Category I C x y) →
is-equiv (is-fiberwise-iso-is-iso-Large-Function-Category f)
is-equiv-is-fiberwise-iso-is-iso-Large-Function-Category =
is-equiv-is-fiberwise-iso-is-iso-Π-Large-Category I (λ _ → C)
equiv-is-fiberwise-iso-is-iso-Large-Function-Category :
(f : hom-Large-Function-Category I C x y) →
( is-iso-Large-Category (Large-Function-Category I C) f) ≃
( (i : I) → is-iso-Large-Category C (f i))
equiv-is-fiberwise-iso-is-iso-Large-Function-Category =
equiv-is-fiberwise-iso-is-iso-Π-Large-Category I (λ _ → C)
is-equiv-is-iso-is-fiberwise-iso-Large-Function-Category :
(f : hom-Large-Function-Category I C x y) →
is-equiv (is-iso-is-fiberwise-iso-Large-Function-Category f)
is-equiv-is-iso-is-fiberwise-iso-Large-Function-Category =
is-equiv-is-iso-is-fiberwise-iso-Π-Large-Category I (λ _ → C)
equiv-is-iso-is-fiberwise-iso-Large-Function-Category :
( f : hom-Large-Function-Category I C x y) →
( (i : I) → is-iso-Large-Category C (f i)) ≃
( is-iso-Large-Category (Large-Function-Category I C) f)
equiv-is-iso-is-fiberwise-iso-Large-Function-Category =
equiv-is-iso-is-fiberwise-iso-Π-Large-Category I (λ _ → C)
is-equiv-fiberwise-iso-iso-Large-Function-Category :
is-equiv fiberwise-iso-iso-Large-Function-Category
is-equiv-fiberwise-iso-iso-Large-Function-Category =
is-equiv-fiberwise-iso-iso-Π-Large-Category I (λ _ → C)
equiv-fiberwise-iso-iso-Large-Function-Category :
( iso-Large-Category (Large-Function-Category I C) x y) ≃
( (i : I) → iso-Large-Category C (x i) (y i))
equiv-fiberwise-iso-iso-Large-Function-Category =
equiv-fiberwise-iso-iso-Π-Large-Category I (λ _ → C)
is-equiv-iso-fiberwise-iso-Large-Function-Category :
is-equiv iso-fiberwise-iso-Large-Function-Category
is-equiv-iso-fiberwise-iso-Large-Function-Category =
is-equiv-iso-fiberwise-iso-Π-Large-Category I (λ _ → C)
equiv-iso-fiberwise-iso-Large-Function-Category :
( (i : I) → iso-Large-Category C (x i) (y i)) ≃
( iso-Large-Category (Large-Function-Category I C) x y)
equiv-iso-fiberwise-iso-Large-Function-Category =
equiv-iso-fiberwise-iso-Π-Large-Category I (λ _ → C)
```