# Rigid objects in a precategory
```agda
module category-theory.rigid-objects-precategories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.universe-levels
```
</details>
## Idea
A **rigid object** in a [precategory](category-theory.precategories.md) is an
object whose [automorphism group](group-theory.automorphism-groups.md) is
[trivial](group-theory.trivial-groups.md).
## Definitions
### The predicate of being rigid
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2) (x : obj-Precategory C)
where
is-rigid-obj-prop-Precategory : Prop l2
is-rigid-obj-prop-Precategory = is-contr-Prop (iso-Precategory C x x)
is-rigid-obj-Precategory : UU l2
is-rigid-obj-Precategory = type-Prop is-rigid-obj-prop-Precategory
is-prop-is-rigid-obj-Precategory : is-prop is-rigid-obj-Precategory
is-prop-is-rigid-obj-Precategory =
is-prop-type-Prop is-rigid-obj-prop-Precategory
```
### The type of rigid objects in a precategory
```agda
rigid-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2)
rigid-obj-Precategory C = Σ (obj-Precategory C) (is-rigid-obj-Precategory C)
module _
{l1 l2 : Level} (C : Precategory l1 l2)
where
obj-rigid-obj-Precategory : rigid-obj-Precategory C → obj-Precategory C
obj-rigid-obj-Precategory = pr1
is-rigid-rigid-obj-Precategory :
(x : rigid-obj-Precategory C) →
is-rigid-obj-Precategory C (obj-rigid-obj-Precategory x)
is-rigid-rigid-obj-Precategory = pr2
```
## External links
- [rigid object](https://ncatlab.org/nlab/show/rigid+object) at $n$Lab