# Isomorphisms in precategories
```agda
module category-theory.isomorphisms-in-precategories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.precategories
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.propositions
open import foundation.retractions
open import foundation.sections
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels
```
</details>
## Idea
An **isomorphism** in a [precategory](category-theory.precategories.md) `C` is a
morphism `f : x → y` in `C` for which there exists a morphism `g : y → x` such
that `f ∘ g = id` and `g ∘ f = id`.
## Definitions
### The predicate of being an isomorphism in a precategory
```agda
is-iso-Precategory :
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
(f : hom-Precategory C x y) →
UU l2
is-iso-Precategory C {x} {y} f =
Σ ( hom-Precategory C y x)
( λ g →
( comp-hom-Precategory C f g = id-hom-Precategory C) ×
( comp-hom-Precategory C g f = id-hom-Precategory C))
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
{f : hom-Precategory C x y}
where
hom-inv-is-iso-Precategory :
is-iso-Precategory C f → hom-Precategory C y x
hom-inv-is-iso-Precategory = pr1
is-section-hom-inv-is-iso-Precategory :
(H : is-iso-Precategory C f) →
comp-hom-Precategory C f (hom-inv-is-iso-Precategory H) =
id-hom-Precategory C
is-section-hom-inv-is-iso-Precategory = pr1 ∘ pr2
is-retraction-hom-inv-is-iso-Precategory :
(H : is-iso-Precategory C f) →
comp-hom-Precategory C (hom-inv-is-iso-Precategory H) f =
id-hom-Precategory C
is-retraction-hom-inv-is-iso-Precategory = pr2 ∘ pr2
```
### Isomorphisms in a precategory
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
(x y : obj-Precategory C)
where
iso-Precategory : UU l2
iso-Precategory = Σ (hom-Precategory C x y) (is-iso-Precategory C)
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
(f : iso-Precategory C x y)
where
hom-iso-Precategory : hom-Precategory C x y
hom-iso-Precategory = pr1 f
is-iso-iso-Precategory :
is-iso-Precategory C hom-iso-Precategory
is-iso-iso-Precategory = pr2 f
hom-inv-iso-Precategory : hom-Precategory C y x
hom-inv-iso-Precategory =
hom-inv-is-iso-Precategory C
( is-iso-iso-Precategory)
is-section-hom-inv-iso-Precategory :
( comp-hom-Precategory C
( hom-iso-Precategory)
( hom-inv-iso-Precategory)) =
( id-hom-Precategory C)
is-section-hom-inv-iso-Precategory =
is-section-hom-inv-is-iso-Precategory C
( is-iso-iso-Precategory)
is-retraction-hom-inv-iso-Precategory :
( comp-hom-Precategory C
( hom-inv-iso-Precategory)
( hom-iso-Precategory)) =
( id-hom-Precategory C)
is-retraction-hom-inv-iso-Precategory =
is-retraction-hom-inv-is-iso-Precategory C
( is-iso-iso-Precategory)
```
## Examples
### The identity isomorphisms
For any object `x : A`, the identity morphism `id_x : hom x x` is an isomorphism
from `x` to `x` since `id_x ∘ id_x = id_x` (it is its own inverse).
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x : obj-Precategory C}
where
is-iso-id-hom-Precategory :
is-iso-Precategory C (id-hom-Precategory C {x})
pr1 is-iso-id-hom-Precategory = id-hom-Precategory C
pr1 (pr2 is-iso-id-hom-Precategory) =
left-unit-law-comp-hom-Precategory C (id-hom-Precategory C)
pr2 (pr2 is-iso-id-hom-Precategory) =
left-unit-law-comp-hom-Precategory C (id-hom-Precategory C)
id-iso-Precategory : iso-Precategory C x x
pr1 id-iso-Precategory = id-hom-Precategory C
pr2 id-iso-Precategory = is-iso-id-hom-Precategory
```
### Equalities induce isomorphisms
An equality between objects `x y : A` gives rise to an isomorphism between them.
This is because, by the J-rule, it is enough to construct an isomorphism given
`refl : x = x`, from `x` to itself. We take the identity morphism as such an
isomorphism.
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
where
iso-eq-Precategory :
(x y : obj-Precategory C) → x = y → iso-Precategory C x y
pr1 (iso-eq-Precategory x y p) = hom-eq-Precategory C x y p
pr2 (iso-eq-Precategory x .x refl) = is-iso-id-hom-Precategory C
compute-hom-iso-eq-Precategory :
{x y : obj-Precategory C} →
(p : x = y) →
hom-eq-Precategory C x y p =
hom-iso-Precategory C (iso-eq-Precategory x y p)
compute-hom-iso-eq-Precategory p = refl
```
## Properties
### Being an isomorphism is a proposition
Let `f : hom x y` and suppose `g g' : hom y x` are both two-sided inverses to
`f`. It is enough to show that `g = g'` since the equalities are
[propositions](foundation-core.propositions.md) (since the hom-types are sets).
But we have the following chain of equalities:
`g = g ∘ id_y = g ∘ (f ∘ g') = (g ∘ f) ∘ g' = id_x ∘ g' = g'`.
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
where
all-elements-equal-is-iso-Precategory :
(f : hom-Precategory C x y)
(H K : is-iso-Precategory C f) → H = K
all-elements-equal-is-iso-Precategory f
(g , p , q) (g' , p' , q') =
eq-type-subtype
( λ g →
product-Prop
( Id-Prop
( hom-set-Precategory C y y)
( comp-hom-Precategory C f g)
( id-hom-Precategory C))
( Id-Prop
( hom-set-Precategory C x x)
( comp-hom-Precategory C g f)
( id-hom-Precategory C)))
( ( inv (right-unit-law-comp-hom-Precategory C g)) ∙
( ap ( comp-hom-Precategory C g) (inv p')) ∙
( inv (associative-comp-hom-Precategory C g f g')) ∙
( ap ( comp-hom-Precategory' C g') q) ∙
( left-unit-law-comp-hom-Precategory C g'))
is-prop-is-iso-Precategory :
(f : hom-Precategory C x y) →
is-prop (is-iso-Precategory C f)
is-prop-is-iso-Precategory f =
is-prop-all-elements-equal
( all-elements-equal-is-iso-Precategory f)
is-iso-prop-Precategory :
(f : hom-Precategory C x y) → Prop l2
pr1 (is-iso-prop-Precategory f) = is-iso-Precategory C f
pr2 (is-iso-prop-Precategory f) = is-prop-is-iso-Precategory f
```
### Equality of isomorphism is equality of their underlying morphisms
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
where
eq-iso-eq-hom-Precategory :
(f g : iso-Precategory C x y) →
hom-iso-Precategory C f = hom-iso-Precategory C g → f = g
eq-iso-eq-hom-Precategory f g =
eq-type-subtype (is-iso-prop-Precategory C)
```
### The type of isomorphisms form a set
The type of isomorphisms between objects `x y : A` is a
[subtype](foundation-core.subtypes.md) of the [set](foundation-core.sets.md)
`hom x y` since being an isomorphism is a proposition.
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
where
is-set-iso-Precategory : is-set (iso-Precategory C x y)
is-set-iso-Precategory =
is-set-type-subtype
( is-iso-prop-Precategory C)
( is-set-hom-Precategory C x y)
iso-set-Precategory : Set l2
pr1 iso-set-Precategory = iso-Precategory C x y
pr2 iso-set-Precategory = is-set-iso-Precategory
```
### Isomorphisms are closed under composition
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y z : obj-Precategory C}
{g : hom-Precategory C y z}
{f : hom-Precategory C x y}
where
hom-comp-is-iso-Precategory :
is-iso-Precategory C g →
is-iso-Precategory C f →
hom-Precategory C z x
hom-comp-is-iso-Precategory q p =
comp-hom-Precategory C
( hom-inv-is-iso-Precategory C p)
( hom-inv-is-iso-Precategory C q)
is-section-comp-is-iso-Precategory :
(q : is-iso-Precategory C g)
(p : is-iso-Precategory C f) →
comp-hom-Precategory C
( comp-hom-Precategory C g f)
( hom-comp-is-iso-Precategory q p) =
id-hom-Precategory C
is-section-comp-is-iso-Precategory q p =
( associative-comp-hom-Precategory C g f _) ∙
( ap
( comp-hom-Precategory C g)
( ( inv
( associative-comp-hom-Precategory C f
( hom-inv-is-iso-Precategory C p)
( hom-inv-is-iso-Precategory C q))) ∙
( ap
( λ h →
comp-hom-Precategory C h (hom-inv-is-iso-Precategory C q))
( is-section-hom-inv-is-iso-Precategory C p) ∙
( left-unit-law-comp-hom-Precategory C
( hom-inv-is-iso-Precategory C q))))) ∙
( is-section-hom-inv-is-iso-Precategory C q)
is-retraction-comp-is-iso-Precategory :
(q : is-iso-Precategory C g)
(p : is-iso-Precategory C f) →
( comp-hom-Precategory C
( hom-comp-is-iso-Precategory q p)
( comp-hom-Precategory C g f)) =
( id-hom-Precategory C)
is-retraction-comp-is-iso-Precategory q p =
( associative-comp-hom-Precategory C
( hom-inv-is-iso-Precategory C p)
( hom-inv-is-iso-Precategory C q)
( comp-hom-Precategory C g f)) ∙
( ap
( comp-hom-Precategory
( C)
( hom-inv-is-iso-Precategory C p))
( ( inv
( associative-comp-hom-Precategory C
( hom-inv-is-iso-Precategory C q)
( g)
( f))) ∙
( ap
( λ h → comp-hom-Precategory C h f)
( is-retraction-hom-inv-is-iso-Precategory C q)) ∙
( left-unit-law-comp-hom-Precategory C f))) ∙
( is-retraction-hom-inv-is-iso-Precategory C p)
is-iso-comp-is-iso-Precategory :
is-iso-Precategory C g → is-iso-Precategory C f →
is-iso-Precategory C (comp-hom-Precategory C g f)
pr1 (is-iso-comp-is-iso-Precategory q p) =
hom-comp-is-iso-Precategory q p
pr1 (pr2 (is-iso-comp-is-iso-Precategory q p)) =
is-section-comp-is-iso-Precategory q p
pr2 (pr2 (is-iso-comp-is-iso-Precategory q p)) =
is-retraction-comp-is-iso-Precategory q p
```
### The composition operation on isomorphisms
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y z : obj-Precategory C}
(g : iso-Precategory C y z)
(f : iso-Precategory C x y)
where
hom-comp-iso-Precategory :
hom-Precategory C x z
hom-comp-iso-Precategory =
comp-hom-Precategory C
( hom-iso-Precategory C g)
( hom-iso-Precategory C f)
is-iso-comp-iso-Precategory :
is-iso-Precategory C hom-comp-iso-Precategory
is-iso-comp-iso-Precategory =
is-iso-comp-is-iso-Precategory C
( is-iso-iso-Precategory C g)
( is-iso-iso-Precategory C f)
comp-iso-Precategory : iso-Precategory C x z
pr1 comp-iso-Precategory = hom-comp-iso-Precategory
pr2 comp-iso-Precategory = is-iso-comp-iso-Precategory
hom-inv-comp-iso-Precategory : hom-Precategory C z x
hom-inv-comp-iso-Precategory =
hom-inv-iso-Precategory C comp-iso-Precategory
is-section-inv-comp-iso-Precategory :
( comp-hom-Precategory C
( hom-comp-iso-Precategory)
( hom-inv-comp-iso-Precategory)) =
( id-hom-Precategory C)
is-section-inv-comp-iso-Precategory =
is-section-hom-inv-iso-Precategory C comp-iso-Precategory
is-retraction-inv-comp-iso-Precategory :
( comp-hom-Precategory C
( hom-inv-comp-iso-Precategory)
( hom-comp-iso-Precategory)) =
( id-hom-Precategory C)
is-retraction-inv-comp-iso-Precategory =
is-retraction-hom-inv-iso-Precategory C comp-iso-Precategory
```
### Inverses of isomorphisms are isomorphisms
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
{f : hom-Precategory C x y}
where
is-iso-inv-is-iso-Precategory :
(p : is-iso-Precategory C f) →
is-iso-Precategory C (hom-inv-iso-Precategory C (f , p))
pr1 (is-iso-inv-is-iso-Precategory p) = f
pr1 (pr2 (is-iso-inv-is-iso-Precategory p)) =
is-retraction-hom-inv-is-iso-Precategory C p
pr2 (pr2 (is-iso-inv-is-iso-Precategory p)) =
is-section-hom-inv-is-iso-Precategory C p
```
### Inverses of isomorphisms
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
where
inv-iso-Precategory :
iso-Precategory C x y → iso-Precategory C y x
pr1 (inv-iso-Precategory f) = hom-inv-iso-Precategory C f
pr2 (inv-iso-Precategory f) =
is-iso-inv-is-iso-Precategory C (is-iso-iso-Precategory C f)
is-iso-inv-iso-Precategory :
(f : iso-Precategory C x y) →
is-iso-Precategory C (hom-inv-iso-Precategory C f)
is-iso-inv-iso-Precategory f =
is-iso-iso-Precategory C (inv-iso-Precategory f)
```
### Groupoid laws of isomorphisms in precategories
#### Composition of isomorphisms satisfies the unit laws
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
(f : iso-Precategory C x y)
where
left-unit-law-comp-iso-Precategory :
comp-iso-Precategory C (id-iso-Precategory C) f = f
left-unit-law-comp-iso-Precategory =
eq-iso-eq-hom-Precategory C
( comp-iso-Precategory C (id-iso-Precategory C) f)
( f)
( left-unit-law-comp-hom-Precategory C
( hom-iso-Precategory C f))
right-unit-law-comp-iso-Precategory :
comp-iso-Precategory C f (id-iso-Precategory C) = f
right-unit-law-comp-iso-Precategory =
eq-iso-eq-hom-Precategory C
( comp-iso-Precategory C f (id-iso-Precategory C))
( f)
( right-unit-law-comp-hom-Precategory C
( hom-iso-Precategory C f))
```
#### Composition of isomorphisms is associative
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y z w : obj-Precategory C}
(h : iso-Precategory C z w)
(g : iso-Precategory C y z)
(f : iso-Precategory C x y)
where
associative-comp-iso-Precategory :
( comp-iso-Precategory C (comp-iso-Precategory C h g) f) =
( comp-iso-Precategory C h (comp-iso-Precategory C g f))
associative-comp-iso-Precategory =
eq-iso-eq-hom-Precategory C
( comp-iso-Precategory C (comp-iso-Precategory C h g) f)
( comp-iso-Precategory C h (comp-iso-Precategory C g f))
( associative-comp-hom-Precategory C
( hom-iso-Precategory C h)
( hom-iso-Precategory C g)
( hom-iso-Precategory C f))
```
#### Composition of isomorphisms satisfies inverse laws
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
(f : iso-Precategory C x y)
where
left-inverse-law-comp-iso-Precategory :
( comp-iso-Precategory C (inv-iso-Precategory C f) f) =
( id-iso-Precategory C)
left-inverse-law-comp-iso-Precategory =
eq-iso-eq-hom-Precategory C
( comp-iso-Precategory C (inv-iso-Precategory C f) f)
( id-iso-Precategory C)
( is-retraction-hom-inv-iso-Precategory C f)
right-inverse-law-comp-iso-Precategory :
( comp-iso-Precategory C f (inv-iso-Precategory C f)) =
( id-iso-Precategory C)
right-inverse-law-comp-iso-Precategory =
eq-iso-eq-hom-Precategory C
( comp-iso-Precategory C f (inv-iso-Precategory C f))
( id-iso-Precategory C)
( is-section-hom-inv-iso-Precategory C f)
```
### The inverse operation is a fibered involution on isomorphisms
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
where
is-fibered-involution-inv-iso-Precategory :
{x y : obj-Precategory C} →
inv-iso-Precategory C {y} {x} ∘ inv-iso-Precategory C {x} {y} ~ id
is-fibered-involution-inv-iso-Precategory f = refl
is-equiv-inv-iso-Precategory :
{x y : obj-Precategory C} → is-equiv (inv-iso-Precategory C {x} {y})
is-equiv-inv-iso-Precategory =
is-equiv-is-invertible
( inv-iso-Precategory C)
( is-fibered-involution-inv-iso-Precategory)
( is-fibered-involution-inv-iso-Precategory)
equiv-inv-iso-Precategory :
{x y : obj-Precategory C} → iso-Precategory C x y ≃ iso-Precategory C y x
pr1 equiv-inv-iso-Precategory = inv-iso-Precategory C
pr2 equiv-inv-iso-Precategory = is-equiv-inv-iso-Precategory
```
### A morphism `f` is an isomorphism if and only if precomposition by `f` is an equivalence
**Proof:** If `f` is an isomorphism with inverse `f⁻¹`, then precomposing with
`f⁻¹` is an inverse of precomposing with `f`. The only interesting direction is
therefore the converse.
Suppose that precomposing with `f` is an equivalence, for any object `z`. Then
```text
- ∘ f : hom y x → hom x x
```
is an equivalence. In particular, there is a unique morphism `g : y → x` such
that `g ∘ f = id`. Thus we have a retraction of `f`. To see that `g` is also a
section, note that the map
```text
- ∘ f : hom y y → hom x y
```
is an equivalence. In particular, it is injective. Therefore it suffices to show
that `(f ∘ g) ∘ f = id ∘ f`. To see this, we calculate
```text
(f ∘ g) ∘ f = f ∘ (g ∘ f) = f ∘ id = f = id ∘ f.
```
This completes the proof.
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
{f : hom-Precategory C x y}
(H : (z : obj-Precategory C) → is-equiv (precomp-hom-Precategory C f z))
where
hom-inv-is-iso-is-equiv-precomp-hom-Precategory : hom-Precategory C y x
hom-inv-is-iso-is-equiv-precomp-hom-Precategory =
map-inv-is-equiv (H x) (id-hom-Precategory C)
is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Precategory :
( comp-hom-Precategory C
( hom-inv-is-iso-is-equiv-precomp-hom-Precategory)
( f)) =
( id-hom-Precategory C)
is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Precategory =
is-section-map-inv-is-equiv (H x) (id-hom-Precategory C)
is-section-hom-inv-is-iso-is-equiv-precomp-hom-Precategory :
( comp-hom-Precategory C
( f)
( hom-inv-is-iso-is-equiv-precomp-hom-Precategory)) =
( id-hom-Precategory C)
is-section-hom-inv-is-iso-is-equiv-precomp-hom-Precategory =
is-injective-is-equiv
( H y)
( ( associative-comp-hom-Precategory C
( f)
( hom-inv-is-iso-is-equiv-precomp-hom-Precategory)
( f)) ∙
( ap
( comp-hom-Precategory C f)
( is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Precategory)) ∙
( right-unit-law-comp-hom-Precategory C f) ∙
( inv (left-unit-law-comp-hom-Precategory C f)))
is-iso-is-equiv-precomp-hom-Precategory : is-iso-Precategory C f
pr1 is-iso-is-equiv-precomp-hom-Precategory =
hom-inv-is-iso-is-equiv-precomp-hom-Precategory
pr1 (pr2 is-iso-is-equiv-precomp-hom-Precategory) =
is-section-hom-inv-is-iso-is-equiv-precomp-hom-Precategory
pr2 (pr2 is-iso-is-equiv-precomp-hom-Precategory) =
is-retraction-hom-inv-is-iso-is-equiv-precomp-hom-Precategory
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
{f : hom-Precategory C x y}
(is-iso-f : is-iso-Precategory C f)
(z : obj-Precategory C)
where
map-inv-precomp-hom-is-iso-Precategory :
hom-Precategory C x z → hom-Precategory C y z
map-inv-precomp-hom-is-iso-Precategory =
precomp-hom-Precategory C (hom-inv-is-iso-Precategory C is-iso-f) z
is-section-map-inv-precomp-hom-is-iso-Precategory :
is-section
( precomp-hom-Precategory C f z)
( map-inv-precomp-hom-is-iso-Precategory)
is-section-map-inv-precomp-hom-is-iso-Precategory g =
( associative-comp-hom-Precategory C
( g)
( hom-inv-is-iso-Precategory C is-iso-f)
( f)) ∙
( ap
( comp-hom-Precategory C g)
( is-retraction-hom-inv-is-iso-Precategory C is-iso-f)) ∙
( right-unit-law-comp-hom-Precategory C g)
is-retraction-map-inv-precomp-hom-is-iso-Precategory :
is-retraction
( precomp-hom-Precategory C f z)
( map-inv-precomp-hom-is-iso-Precategory)
is-retraction-map-inv-precomp-hom-is-iso-Precategory g =
( associative-comp-hom-Precategory C
( g)
( f)
( hom-inv-is-iso-Precategory C is-iso-f)) ∙
( ap
( comp-hom-Precategory C g)
( is-section-hom-inv-is-iso-Precategory C is-iso-f)) ∙
( right-unit-law-comp-hom-Precategory C g)
is-equiv-precomp-hom-is-iso-Precategory :
is-equiv (precomp-hom-Precategory C f z)
is-equiv-precomp-hom-is-iso-Precategory =
is-equiv-is-invertible
( map-inv-precomp-hom-is-iso-Precategory)
( is-section-map-inv-precomp-hom-is-iso-Precategory)
( is-retraction-map-inv-precomp-hom-is-iso-Precategory)
equiv-precomp-hom-is-iso-Precategory :
hom-Precategory C y z ≃ hom-Precategory C x z
pr1 equiv-precomp-hom-is-iso-Precategory =
precomp-hom-Precategory C f z
pr2 equiv-precomp-hom-is-iso-Precategory =
is-equiv-precomp-hom-is-iso-Precategory
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
(f : iso-Precategory C x y)
(z : obj-Precategory C)
where
is-equiv-precomp-hom-iso-Precategory :
is-equiv (precomp-hom-Precategory C (hom-iso-Precategory C f) z)
is-equiv-precomp-hom-iso-Precategory =
is-equiv-precomp-hom-is-iso-Precategory C (is-iso-iso-Precategory C f) z
equiv-precomp-hom-iso-Precategory :
hom-Precategory C y z ≃ hom-Precategory C x z
equiv-precomp-hom-iso-Precategory =
equiv-precomp-hom-is-iso-Precategory C (is-iso-iso-Precategory C f) z
```
### A morphism `f` is an isomorphism if and only if postcomposition by `f` is an equivalence
**Proof:** If `f` is an isomorphism with inverse `f⁻¹`, then postcomposing with
`f⁻¹` is an inverse of postcomposing with `f`. The only interesting direction is
therefore the converse.
Suppose that postcomposing with `f` is an equivalence, for any object `z`. Then
```text
f ∘ - : hom y x → hom y y
```
is an equivalence. In particular, there is a unique morphism `g : y → x` such
that `f ∘ g = id`. Thus we have a section of `f`. To see that `g` is also a
retraction, note that the map
```text
f ∘ - : hom x x → hom x y
```
is an equivalence. In particular, it is injective. Therefore it suffices to show
that `f ∘ (g ∘ f) = f ∘ id`. To see this, we calculate
```text
f ∘ (g ∘ f) = (f ∘ g) ∘ f = id ∘ f = f = f ∘ id.
```
This completes the proof.
```agda
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
{f : hom-Precategory C x y}
(H : (z : obj-Precategory C) → is-equiv (postcomp-hom-Precategory C f z))
where
hom-inv-is-iso-is-equiv-postcomp-hom-Precategory : hom-Precategory C y x
hom-inv-is-iso-is-equiv-postcomp-hom-Precategory =
map-inv-is-equiv (H y) (id-hom-Precategory C)
is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory :
( comp-hom-Precategory C
( f)
( hom-inv-is-iso-is-equiv-postcomp-hom-Precategory)) =
( id-hom-Precategory C)
is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory =
is-section-map-inv-is-equiv (H y) (id-hom-Precategory C)
is-retraction-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory :
comp-hom-Precategory C
( hom-inv-is-iso-is-equiv-postcomp-hom-Precategory)
( f) =
( id-hom-Precategory C)
is-retraction-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory =
is-injective-is-equiv
( H x)
( ( inv
( associative-comp-hom-Precategory C
( f)
( hom-inv-is-iso-is-equiv-postcomp-hom-Precategory)
( f))) ∙
( ap
( comp-hom-Precategory' C f)
( is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory)) ∙
( left-unit-law-comp-hom-Precategory C f) ∙
( inv (right-unit-law-comp-hom-Precategory C f)))
is-iso-is-equiv-postcomp-hom-Precategory : is-iso-Precategory C f
pr1 is-iso-is-equiv-postcomp-hom-Precategory =
hom-inv-is-iso-is-equiv-postcomp-hom-Precategory
pr1 (pr2 is-iso-is-equiv-postcomp-hom-Precategory) =
is-section-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory
pr2 (pr2 is-iso-is-equiv-postcomp-hom-Precategory) =
is-retraction-hom-inv-is-iso-is-equiv-postcomp-hom-Precategory
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
{f : hom-Precategory C x y}
(is-iso-f : is-iso-Precategory C f)
(z : obj-Precategory C)
where
map-inv-postcomp-hom-is-iso-Precategory :
hom-Precategory C z y → hom-Precategory C z x
map-inv-postcomp-hom-is-iso-Precategory =
postcomp-hom-Precategory C (hom-inv-is-iso-Precategory C is-iso-f) z
is-section-map-inv-postcomp-hom-is-iso-Precategory :
is-section
( postcomp-hom-Precategory C f z)
( map-inv-postcomp-hom-is-iso-Precategory)
is-section-map-inv-postcomp-hom-is-iso-Precategory g =
( inv
( associative-comp-hom-Precategory C
( f)
( hom-inv-is-iso-Precategory C is-iso-f)
( g))) ∙
( ap
( comp-hom-Precategory' C g)
( is-section-hom-inv-is-iso-Precategory C is-iso-f)) ∙
( left-unit-law-comp-hom-Precategory C g)
is-retraction-map-inv-postcomp-hom-is-iso-Precategory :
is-retraction
( postcomp-hom-Precategory C f z)
( map-inv-postcomp-hom-is-iso-Precategory)
is-retraction-map-inv-postcomp-hom-is-iso-Precategory g =
( inv
( associative-comp-hom-Precategory C
( hom-inv-is-iso-Precategory C is-iso-f)
( f)
( g))) ∙
( ap
( comp-hom-Precategory' C g)
( is-retraction-hom-inv-is-iso-Precategory C is-iso-f)) ∙
( left-unit-law-comp-hom-Precategory C g)
is-equiv-postcomp-hom-is-iso-Precategory :
is-equiv (postcomp-hom-Precategory C f z)
is-equiv-postcomp-hom-is-iso-Precategory =
is-equiv-is-invertible
( map-inv-postcomp-hom-is-iso-Precategory)
( is-section-map-inv-postcomp-hom-is-iso-Precategory)
( is-retraction-map-inv-postcomp-hom-is-iso-Precategory)
equiv-postcomp-hom-is-iso-Precategory :
hom-Precategory C z x ≃ hom-Precategory C z y
pr1 equiv-postcomp-hom-is-iso-Precategory =
postcomp-hom-Precategory C f z
pr2 equiv-postcomp-hom-is-iso-Precategory =
is-equiv-postcomp-hom-is-iso-Precategory
module _
{l1 l2 : Level}
(C : Precategory l1 l2)
{x y : obj-Precategory C}
(f : iso-Precategory C x y)
(z : obj-Precategory C)
where
is-equiv-postcomp-hom-iso-Precategory :
is-equiv (postcomp-hom-Precategory C (hom-iso-Precategory C f) z)
is-equiv-postcomp-hom-iso-Precategory =
is-equiv-postcomp-hom-is-iso-Precategory C (is-iso-iso-Precategory C f) z
equiv-postcomp-hom-iso-Precategory :
hom-Precategory C z x ≃ hom-Precategory C z y
equiv-postcomp-hom-iso-Precategory =
equiv-postcomp-hom-is-iso-Precategory C (is-iso-iso-Precategory C f) z
```
### When `hom x y` is a proposition, The type of isomorphisms from `x` to `y` is a proposition
The type of isomorphisms between objects `x y : A` is a subtype of `hom x y`, so
when this type is a proposition, then the type of isomorphisms from `x` to `y`
form a proposition.
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2)
{x y : obj-Precategory C}
where
is-prop-iso-is-prop-hom-Precategory :
is-prop (hom-Precategory C x y) → is-prop (iso-Precategory C x y)
is-prop-iso-is-prop-hom-Precategory =
is-prop-type-subtype (is-iso-prop-Precategory C)
iso-prop-is-prop-hom-Precategory :
is-prop (hom-Precategory C x y) → Prop l2
pr1 (iso-prop-is-prop-hom-Precategory is-prop-hom-C-x-y) =
iso-Precategory C x y
pr2 (iso-prop-is-prop-hom-Precategory is-prop-hom-C-x-y) =
is-prop-iso-is-prop-hom-Precategory is-prop-hom-C-x-y
```
### When `hom x y` and `hom y x` are propositions, it suffices to provide a morphism in each direction to construct an isomorphism
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2)
{x y : obj-Precategory C}
where
is-iso-is-prop-hom-Precategory' :
is-prop (hom-Precategory C x x) →
is-prop (hom-Precategory C y y) →
(f : hom-Precategory C x y) →
hom-Precategory C y x →
is-iso-Precategory C f
pr1 (is-iso-is-prop-hom-Precategory' _ _ f g) = g
pr1 (pr2 (is-iso-is-prop-hom-Precategory' _ is-prop-hom-C-y-y f g)) =
eq-is-prop is-prop-hom-C-y-y
pr2 (pr2 (is-iso-is-prop-hom-Precategory' is-prop-hom-C-x-x _ f g)) =
eq-is-prop is-prop-hom-C-x-x
iso-is-prop-hom-Precategory' :
is-prop (hom-Precategory C x x) →
is-prop (hom-Precategory C y y) →
hom-Precategory C x y →
hom-Precategory C y x →
iso-Precategory C x y
pr1 (iso-is-prop-hom-Precategory' _ _ f g) = f
pr2 (iso-is-prop-hom-Precategory' is-prop-hom-C-x-x is-prop-hom-C-y-y f g) =
is-iso-is-prop-hom-Precategory' is-prop-hom-C-x-x is-prop-hom-C-y-y f g
is-iso-is-prop-hom-Precategory :
((x' y' : obj-Precategory C) → is-prop (hom-Precategory C x' y')) →
(f : hom-Precategory C x y) → hom-Precategory C y x →
is-iso-Precategory C f
is-iso-is-prop-hom-Precategory is-prop-hom-C =
is-iso-is-prop-hom-Precategory' (is-prop-hom-C x x) (is-prop-hom-C y y)
iso-is-prop-hom-Precategory :
((x' y' : obj-Precategory C) → is-prop (hom-Precategory C x' y')) →
hom-Precategory C x y →
hom-Precategory C y x →
iso-Precategory C x y
iso-is-prop-hom-Precategory is-prop-hom-C =
iso-is-prop-hom-Precategory' (is-prop-hom-C x x) (is-prop-hom-C y y)
```
### Functoriality of `iso-eq`
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2)
{x y z : obj-Precategory C}
where
preserves-concat-iso-eq-Precategory :
(p : x = y) (q : y = z) →
iso-eq-Precategory C x z (p ∙ q) =
comp-iso-Precategory C
( iso-eq-Precategory C y z q)
( iso-eq-Precategory C x y p)
preserves-concat-iso-eq-Precategory refl q =
inv (right-unit-law-comp-iso-Precategory C (iso-eq-Precategory C y z q))
```